MATH 1432

4 EXAM & REVIEW

L'Hôpital's Rule: In each of the following, determine whether or not the given limit is an indeterminate form. If it is an indeterminate form, give the type (e.g., 0/0, ∞/∞ , $0 \cdot \infty$ etc.). Evaluate each of the limits.

(a)
$$\lim_{x \to 0} \frac{1+x-e^x}{x^2}$$
 (b) $\lim_{x \to 1} \frac{x+\ln x}{2x^2}$ (c) $\lim_{x \to \pi/2} \left(x-\frac{\pi}{2}\right) \tan x$
(d) $\lim_{x \to \infty} \left(1+\frac{2}{x}\right)^{2x}$ (e) $\lim_{x \to 0} \frac{1-\cos x}{x^2}$ (f) $\lim_{x \to 0^+} \left(\frac{1}{x}-\frac{1}{\sqrt{x}}\right)$

Improper Integrals: Determine whether or not the given integral is improper. If it is improper, determine whether it converges or diverges. In the case of convergence, give the value.

(a)
$$\int_{2}^{6} \frac{1}{\sqrt{x-2}} dx$$
 (b) $\int_{-1}^{1} \frac{1}{4-x^{2}} dx$ (c) $\int_{0}^{\infty} x e^{-x} dx$
(d) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} dx$ (e) $\int_{1}^{\infty} \frac{1}{\sqrt{x-1}} dx$

Infinite Series, General:

- (a) The series $4-3+\frac{9}{4}-\frac{27}{16}+\cdots$ is a geometric series. Find the general term a_k and write the series in the form $\sum_{k=0}^{\infty} a_k$. does the series converge? If so, what is the sum?
- (b) Given the series: $\sin(\pi/2) + \sin(3\pi/2) + \sin(5\pi/2) + \cdots = \sum_{k=0}^{\infty} \sin\left[(2k+1)\pi/2\right].$

Find the general term s_n for the sequence of partial sums of the series. Does the series converge or diverge?

(c) Given the series $2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \cdots$. What is the general term a_k of the series? Determine whether the series converges or diverges.

Nonnegative Series: Determine whether the given series converges or diverges; state which test you are using to determine convergence/divergence and show all work.

(a)
$$\sum_{k=0}^{\infty} \frac{k^2 2^k}{(k+1)!}$$
 (b) $\sum_{k=0}^{\infty} \frac{3^{k+1}}{(k+1)^2 e^k}$

(c)
$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$
 (d) $\sum_{k=0}^{\infty} \frac{2k+1}{\sqrt{k^5+3k^3+4}}$

Arbitrary Series:

(a) In each of the following, determine whether the given series is absolutely convergent, conditionally convergent, or divergent; state which test you are using to determine convergence/divergence, and show all work.

(i)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k^2 + 3k + 2}}$$
 (ii) $\sum_{k=0}^{\infty} \frac{\sin(k)}{(k+1)^2}$ (iii) $\sum_{k=0}^{\infty} \frac{(-1)^k k^2}{2^k}$

(b) Does the series $\sum_{k=0}^{\infty} \frac{k^2}{(\ln 2)^k}$ converge or diverge? Does the series $\sum_{k=0}^{\infty} \frac{k^3}{(\ln 3)^k}$ converge or diverge?

Power Series:

Find the radius of convergence and the interval of convergence of each of the following power series

(a)
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{4^k \ln k} x^k$$

(b) $\sum_{k=0}^{\infty} \frac{1}{k^3 + 1} x^k$
(c) $\sum_{k=0}^{\infty} \frac{1}{(k+1)3^k} (x+1)^k$
(d) $\sum_{k=0}^{\infty} \frac{(-2)^k}{\sqrt{k+1}} x^k$
(e) $\sum_{k=0}^{\infty} \frac{k!}{4^k} (x-3)^k$
(f) $\sum_{k=0}^{\infty} \frac{k}{k^3 + 2} x^k$

Taylor Polynomials, Taylor Series:

- (a) Determine the Taylor polynomial in powers of x of degree 4 for the function $f(x) = (1 + 2x)^{3/2}$.
- (b) Use the Taylor series expansion (in powers of x) for $f(x) = e^x$ to find the Taylor series expansion of $g(x) = \cosh x$.
- (c) Determine the Taylor polynomial in powers of $x \pi/6$ of degree 5 for $f(x) = \sin x$.
- The Taylor series expansion of $f(x) = \frac{x}{1+2x}$ is: (d) $f(x) = x - 2x^{2} + 4x^{3} - 8x^{4} + \dots = \sum_{k=1}^{\infty} (-1)^{k-1} 2^{k-1} x^{k}.$

What is $f^{(9)}(0)$?

Approximation by Taylor Polynomials:

- (a) Assume that f is a function such that $|f^{(n)}(x)| \leq 2$ for all n and x.
 - (i) Estimate the error if $P_4(0.5)$ is used to approximate f(0.5).
 - (ii) Find the least integer n for which $P_n(0.5)$ approximates f(0.5) correct to four decimal places.
- (b) Let $f(x) = e^x$.
 - (i) Estimate the error if $P_4(0.5)$ is used to approximate \sqrt{e} .

- (*ii*) Find the least integer n for which $P_n(0.5)$ approximates \sqrt{e} with error less than 10^{-4} .
- (c) Let $f(x) = \cos x$.
 - (i) Estimate the error if P_2 in powers of $x \pi/4$ is used to approximate $\cos 40^{\circ}$.
 - (ii) Find the least integer n for which P_n approximates $\cos 40^\circ$ with 5 decimal place accuracy.