L'Hôpital's Rule: In each of the following, determine whether or not the given limit is an indeterminate form. If it is an indeterminate form, give the type (e.g., $0 / 0, \infty / \infty, 0 \cdot \infty$ etc.). Evaluate each of the limits.
(a) $\lim _{x \rightarrow 0} \frac{1+x-e^{x}}{x^{2}}$
(b) $\lim _{x \rightarrow 1} \frac{x+\ln x}{2 x^{2}}$
(c) $\lim _{x \rightarrow \pi / 2}\left(x-\frac{\pi}{2}\right) \tan x$
(d) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{2 x}$
(e) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(f) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sqrt{x}}\right)$

Improper Integrals: Determine whether or not the given integral is improper. If it is improper, determine whether it converges or diverges. In the case of convergence, give the value.
(a) $\int_{2}^{6} \frac{1}{\sqrt{x-2}} d x$
(b) $\int_{-1}^{1} \frac{1}{4-x^{2}} d x$
(c) $\int_{0}^{\infty} x e^{-x} d x$
(d) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$
(e) $\int_{1}^{\infty} \frac{1}{\sqrt{x-1}} d x$

Infinite Series, General:

(a) The series $4-3+\frac{9}{4}-\frac{27}{16}+\cdots$ is a geometric series. Find the general term a_{k} and write the series in the form $\sum_{k=0}^{\infty} a_{k}$. does the series converge? If so, what is the sum?
(b) Given the series: $\sin (\pi / 2)+\sin (3 \pi / 2)+\sin (5 \pi / 2)+\cdots=\sum_{k=0}^{\infty} \sin [(2 k+1) \pi / 2]$.

Find the general term s_{n} for the sequence of partial sums of the series. Does the series converge or diverge?
(c) Given the series $2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\cdots$. What is the general term a_{k} of the series? Determine whether the series converges or diverges.

Nonnegative Series: Determine whether the given series converges or diverges; state which test you are using to determine convergence/divergence and show all work.
(a) $\sum_{k=0}^{\infty} \frac{k^{2} 2^{k}}{(k+1)!}$
(b) $\sum_{k=0}^{\infty} \frac{3^{k+1}}{(k+1)^{2} e^{k}}$
(c) $\sum_{k=1}^{\infty} \frac{\ln k}{k}$
(d) $\sum_{k=0}^{\infty} \frac{2 k+1}{\sqrt{k^{5}+3 k^{3}+4}}$

Arbitrary Series:

(a) In each of the following, determine whether the given series is absolutely convergent, conditionally convergent, or divergent; state which test you are using to determine convergence/divergence, and show all work.
(i) $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k^{2}+3 k+2}}$
(ii) $\sum_{k=0}^{\infty} \frac{\sin (k)}{(k+1)^{2}}$
(iii) $\sum_{k=0}^{\infty} \frac{(-1)^{k} k^{2}}{2^{k}}$
(b) Does the series $\sum_{k=0}^{\infty} \frac{k^{2}}{(\ln 2)^{k}}$ converge or diverge? Does the series $\sum_{k=0}^{\infty} \frac{k^{3}}{(\ln 3)^{k}}$ converge or diverge?

Power Series:

Find the radius of convergence and the interval of convergence of each of the following power series
(a) $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{4^{k} \ln k} x^{k}$
(b) $\sum_{k=0}^{\infty} \frac{1}{k^{3}+1} x^{k}$
(c) $\sum_{k=0}^{\infty} \frac{1}{(k+1) 3^{k}}(x+1)^{k}$
(d) $\sum_{k=0}^{\infty} \frac{(-2)^{k}}{\sqrt{k+1}} x^{k}$
(e) $\sum_{k=0}^{\infty} \frac{k!}{4^{k}}(x-3)^{k}$
(f) $\sum_{k=0}^{\infty} \frac{k}{k^{3}+2} x^{k}$

Taylor Polynomials, Taylor Series:

(a) Determine the Taylor polynomial in powers of x of degree 4 for the function $f(x)=(1+2 x)^{3 / 2}$.
(b) Use the Taylor series expansion (in powers of x) for $f(x)=e^{x}$ to find the Taylor series expansion of $g(x)=\cosh x$.
(c) Determine the Taylor polynomial in powers of $x-\pi / 6$ of degree 5 for $f(x)=\sin x$.
(d) The Taylor series expansion of $f(x)=\frac{x}{1+2 x}$ is:

$$
f(x)=x-2 x^{2}+4 x^{3}-8 x^{4}+\cdots=\sum_{k=1}^{\infty}(-1)^{k-1} 2^{k-1} x^{k}
$$

What is $f^{(9)}(0) ?$

Approximation by Taylor Polynomials:

(a) Assume that f is a function such that $\left|f^{(n)}(x)\right| \leq 2$ for all n and x.
(i) Estimate the error if $P_{4}(0.5)$ is used to approximate $f(0.5)$.
(ii) Find the least integer n for which $P_{n}(0.5)$ approximates $f(0.5)$ correct to four decimal places.
(b) Let $f(x)=e^{x}$.
(i) Estimate the error if $P_{4}(0.5)$ is used to approximate \sqrt{e}.
(ii) Find the least integer n for which $P_{n}(0.5)$ approximates \sqrt{e} with error less than 10^{-4}.
(c) Let $f(x)=\cos x$.
(i) Estimate the error if P_{2} in powers of $x-\pi / 4$ is used to approximate $\cos 40^{\circ}$.
(ii) Find the least integer n for which P_{n} approximates $\cos 40^{\circ}$ with 5 decimal place accuracy.

