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We now have another way to form new sets from old ones. Given a set A, we can
consider sets whose elements are subsets of A. In particular, we can consider the set
of all subsets of A. This set is sometimes denoted by the symbol & (A) and is called
the power set of A (for reasons to be explained later).

When we have a set whose elements are sets, we shall often refer to it as a collec-
tion of sets and denote it by a script letter such as 4 or B. This device will help us
in keeping things straight in arguments where we have to consider objects, and sets of
objects, and collections of sets of objects, all at the same time. For example, we might
use 4 to denote the collection of all decks of cards in the world, letting an ordinary
capital letter A denote a deck of cards and a lowercase letter a denote a single playing
card.

" A certain amount of care with notation is needed at this point. We make a distinc-
tion between the object a, which is an element of a set A, and the one-element set {a},

which is a subset of A. To illustrate, if A is the set {a, b, ¢}, then the statements

acA, {a} C A, and {a} € P(A)

are all correct, but the statements {a} € A and a C A are not.

Arbitrary Unions and Intersections

We have already defined what we mean by the union and the intersection of two sets.
There is no reason to limit ourselves to just two sets, for we can just as well form the
union and intersection of arbitrarily many sets.

Given a collection 4 of sets, the union of the elements of 4 is defined by the
equation

U A=1{x|x e Aforatleast one A € A}.
A€A

The intersection of the elements of A is defined by the equation

ﬂ A={x|x e Aforevery A € A}.
ek : ,

There is no problem with these definitions if one of the elements of 4 happens to be
the empty set. But it is a bit tricky to decide what (if anything) these definitions mean
if we allow <4 to be the empty collection. Applying the definitions literally, we see that
no element x satisfies the defining property for the union of the elements of 4. So it is
reasonable to say that

JA=2

AeA

. if o4 is empty. On the other hand, every x satisfies (vacuously) the defining property for
the intersection of the elements of +. The question is, every x in what set? If one has a

given large set X that is specified at the outset of the discussion to be one’s “universe of
discourse,” and one considers only subsets of X throughout, it is reasonable to let

(1a=x

AcA
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when 4 is empty. Not all mathematicians follow this convention, however. To avoid
difficulty, we shall not define the intersection when A is empry.

Cartesian Products

There is yet another way of forming new sets from old ones; it involves the notion of an
“ordered pair” of objects. When you studied analytic geometry, the first thing you did -
was to convince yourself that after one has chosen an x-axis and a y-axis in the plane,
every point in the plane can be made-to correspond to a unique ordered pair (x, y) of
real numbers. (In a more sophisticated treatment of geometry, the plane is more likely
to be defined as the set of all ordered pairs of real numbers!)

The notion of ordered pair carries over to general sets. Given sets A and B, we
define their cartesian product A x B to be the set of all ordered pairs (a, b) for which a
is an element of A and b is an element of B. Formally,

AxB:{(a,b)laeAandbeB}.

This definition assumes that the concept of “ordered pair” is already given. It can be
taken as a primitive concept, as was the notion of “set”; or it can be given a definition in
terms of the set operations already introduced. One definition in terms of set operations is
expressed by the equation

(a,b) = {{a}, {a, D}}:

it defines the ordered pair (a, b) as a collection of sets. If a # b, this definition says that
(a, b) is a collection containing two sets, one of which is a one-element set and the other
a two-element set. The first coordinate of the ordered pair is defined to be the element
belonging to both sets, and the second coordinate is the element belonging to only one of
the sets. If ¢ = b, then (a, b) is a collection containing only one set {a}, since {a, b} =
{a, a} = {a} in this case. Its first coordinate and second coordinate both equal the element
in this single set. ‘ o : S .

1 think it is fair to say that most mathematicians think of an ordered pair as a primitive
concept rather than thinking of it as 2 collection of sets!

Let us make a comment on notation. Itis an unfortunate fact that the notation (a, b)
is firmly established in mathematics with two entirely different meanings. One mean-
ing, as an ordered pair of objects, we have just discussed. The other meaning is the
one you are familiar with from analysis; if a and b are real numbers, the symbol (a, b)
is used to denote the interval consisting of all numbers x such thata < x < b. Most of
the time, this conflict in notation will cause no difficulty because the meaning will be
clear from the context. Whenever a situation occurs where ¢onfusion is possible, we
shall adopt a different notation for the ordered pair (a, b), denoting it by the symbol

axb

instead.
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Exercises

1. Check the distributive laws for U and N and DeMorgan’s laws.

9. Determine which of the following statements are true for all sets A, B, C, and D.
If a double implication fails, determine whether one or the other of the possible
implications holds. If an equality fails, determine whether the statement be-
comes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols C or D. .

(a) ACBandACC@AC(BUC).

(b) AcCBorACC& ACBUCO).

(©) ACBandACC@AC(BﬂC).

(d ACBorACC& AC(BNO).

() A—(A—B)=B5B.

f) A-(B—A)=A—-B. :

(&) Aﬂ(B—C):(AﬂB)——(AﬂC).

(h) AU(B—C):(AUB)——(AUC).

(1) (ANB)U(A—B)=A4.

@ ACCandBCD=>(A><B)C(CxD).

(k) The converse of G).

(1) The converse of (), assuming that A and B are nonempty.

(m) (AxB)U(CxD):(AUC) x (B U D).

(@) (A xB)N(x D)y=(ANC) X (BN D).

(0) Ax(B—C):(AxB)—(AxC).

)] (A—B)x(C—D)':(AxC—BxC)——AxD.

(@ (AxB)—(CXD);(A—C)x(B—D).

3. (a) Write the contrapositive and converse of the following statement: “Ifx <0,
then x> — x > 0, and determine which (if any) of the three statements are
true. ) :

(b) Do the same for the staterment “If x > 0, then x2—x>0"

4. Let A and B be sets of real numbers. Write the negation of each of the following -
statements: ' ‘
{(a) Foreverya € A, it is true that a? € B.

(b) For atleastonea € A, it is true that a% € B.
(c) Foreverya € A, itis true that a’ ¢ B.
(d) For at least one a ¢ A, it is true that a® € B.

5. Let 4 be a nonempty collection of sets. Determine the truth of each of the
following statements and of their converses: :
(@) x € Jgep A= X € A for at least one A € .
) x € Upcp A=>x € Aforevery A € A,
(©) x € Npen A= X € A for at least one A € A.
(d) x €(Npea A= XE A for every A € A.

6. Write the contrapositive of each of the statements of Exercise 5.
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. Given sets A, B, and C, express each of the following sets in terms of A, B,
and C, using the symbols U, N, and —.

D={x|xeAand(xeBorxeC)},
E={x|(xeAandx € B)orx € C},
F:{xlxeAand(xeB:}xEC)}.

. If a set A has two elements, show ihat P (A) has four elements. How many
elements does (A) have if A has one element? Three elements? No elements?
Why is 2 (A) called the power set of A?

- Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

- Let R denote the set of real numbers. For each of the following subsets of R x R,
determine whether it is equal to the cartesian product of two subsets of R.
(@ {(x,y) ] x is an integer}.
® {(x,»)10<y<1).
© {(.y) 1y > x}.
(d) {(x,y) | x isnot an integer and Y is an integer}.
© {6, 1x*+y* < 1).

§2 Functions

The concept of function is one you have seen many times already, so it is hardly nec-
essary to remind you how central it is to all mathematics. In this section, we give the:
precise mathematical definition, and we explore some of the associated concepts.

A function is usually thought of as a rule that assigns to each element of a set A,
an element of a set B. In calculus, a function is often given by a simple formula such
as f(x) =3x>+2or perhaps by a more complicated formula such as

F@ =Yk
k=1

One often does not even mention the sets A and B explicitly, agreeing to take A to be
the set of all real numbers for which the rule makes sense and B to be the set of all real
numbers.

As one goes further in mathematics, however, one needs to be more precise about
what a function is. Mathematicians think of functions in the way we just described,
but the definition they use is more exact. First, we define the following:

Definition. A rule of assignment is a subset r of the cartesian product C x D of two
sets, having the property that each element of C appears as the first coordinate of at
most one ordered pair belonging to r.
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Thus, a subset r of C x D is arule of assignment if
((c,d) erand (c,d) erl=>[d = d.
We think of » as a way of assigning, t0 the element ¢ of C, the element d of D for

which (¢, d) € r.
Given a rule of assignment r, the domain of 1 is defined to be the subset of C

consisting of all first coordinates of elements of r, and the image set of is defined as
ng of all second coordinates of elements of r. Formally,

domain r = {c | there exists d € D such that (¢, d) € r},
image r = {d | there exists ¢ € C such that (¢, d) € r}.

Note that given a rule of assignment 7, its domain and image are entirely determined.

Now we can say what a function is.

Definition. A function f is arule of assignment r, together with a set B that contains
the image set of r. The domain A of the rule r is also called the domain of the
function f; the image set of r 18 also called the image set of f; and the set B is called

the range of f 1
If f is a function having domain A and range B, we €Xpress this fact by writing

f:A— B,

» or “f is a mapping from A into B,” or

which is read “f is a function from A to B
alizes f as a geometric transformation

simply “f maps A into B.” One sometimes visu

physically carrying the points of A to points of B.
Iff:A— Band if @ is an element of A, we denote by f(a) the unique element

of B that the rule determining f assigns to d; it is called the value of f at a, or
is the rule of the function f, then

sometimes the image of a under f. Formally, if »
f(a) denotes the unique element of B such that (a, f(a)) €r.
Using this notation, one can go back to defining functions almost as one did before;

with no lack of rigor. For instance, one can write (lettihg R denote the real numbers)

“Let f be the function whose rule is {(x, %3+ 1) | x € R} and whose
range is R,”
or one can equally well write

“Let f : R — Rbethe function such that f(x) = X417

Both sentences specify precisely the same function. But the sentence “Let f be the
function f(x) = x3 + 17 is no longer adequate for specifying a function because it

specifies neither the domain nor the range of f.

t Analysts are apt to use the word “range” to denote what we have called the “image set” of f.

They avoid giving the set B a name.
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§2
Definition. If f : A — Bandif Apisa subset of A, we define the restriction of f
to A to be the function mapping Ao into B whose rule is

{(a, f(a)) | a € Ao}
1t is denoted by f|Ao, which is read “ f restricted to Ag.”

Let R denote the real numbers and let ]R+ denote the nonnegative reals.

EXAMPLE 1.

Consider the functions
f:R—R defined by fx) = x2,
g:Ry — R - defined by g(x) = x%,
h:R— R+ defined by hix) = %2,

kR — Ry defined by k(x) = x2.

f because their rules are different subsets of
The function % is also different from f, even
he range specified for h is different from the
t from all of these. These functions are

The function g is different from the function
R x R it is the restriction of f to the set Ry.
though their rules are the same set, because
range specified for f. The function k is differen
pictured in Figure 2.1. 5

f

%ﬁé%%

Figure 2.1

g the domain of a function and changing its range are two ways of form-

Restrictin
n from an old one. Another way is to form the composite of two

ing a new functio
functions.

Definition. Given functions f : A — B and g : B — C, we define the composite
go fof fand g asthe function g o f A — C defined by the equation (g o f)(a) =
g(f(a)).

Formally, go f : A — Cisthe function whose ruleis -

{{a, ¢) | For some b e B, f(a) = band g(b) =c}.

We often picture the composite g © f as involvinga physical movement of the point a
to the point f(a), and then to the point g(f (a)), as illustrated in Figure 2.2.
Note that g o f is defined only when the range of f equals the domain of g.
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Kg_»%(b}:c ‘

c

B

Figure 2.2

EXAMPLE 2.  The composite of the function f : R — R given by f(x) = 3x% + 2 and
the function g : R — R given by g(x) = 5x is the function g o f : R — R given by

(g0 NHX) = g(f(x) =gBx* +2) =5(3x +2).

The composite f o g can also be formed in this case; it is the quite different function
fog:R— Rgivenby

(fog)x) = flgx)) = F(5x) =3(5x)% +2.

Definition. A function f : A — B is said to be injective (or one-to-one) if for each
pair of distinct points of A, their images under f are distinct. It is said to be surjective
(or f is said to map A onto B) if every element of B is the image of some element
of A under the function f. If f is both injective and surjective, it is said to be bijective
(or is called a one-to-one correspondence).

More formally, f is injective if
[f@) = f@)]=la=4d],
and f is surjective if
[b e B] = [b = f(a) for at least one a € AJ.

Injectivity of f depends only on the rule of f; surjectivity depends on the range
of f as well. You can check that the composite. of two injective functions is injec-
tive, and the composite of two surjective functions is surjective; it follows that the
composite of two bijective functions is bijective. ’

If f is bijective, there exists a function from B to A called the inverse of f. It is
denoted by f~! and is defined by letting f~!(b) be that unique element a of A for
which f(a) = b. Given b € B, the fact that f is surjective implies that there exists
such an element a € A; the fact that f is injective implies that there is only one such
element a. It is easy to see that if f is bijective, £~ is also bijective.

EXAMPLE 3.  Consider again the functions f, g, 1, and k of Figure 2.1. The function
f : R — Rgiven by f(x) = x? is neither injective nor surjective. Its restriction g to the
nonnegative reals is injective but not surjective. The function # : R — R, obtained from f
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by changing the range is surjective but not injective. The function k : Ry. — R, obtained
from f by restricting the domain and changing the range is both injective and surjective,
$0 it has an inverse. Its inverse is, of course, what we usually call the square-roor function.

A useful criterion for showing that a given function f is bijective is the following,
whose proof is left to the exercises:

Lemma 2.1. Let f : A — B. If there are functions g : B — Aandh : B — A

such that g(f(a)) = a foreverya in A and f( h(b)) = b forevery b in B, then f is
bijectiveand g = h = .

Definition. Let f : A — B. If Ag is a subset of A, we denote by f(Ag) the set
of all images of points of Ag under the function f; this set is called the image of Ag
under f. Formally,

f(Ag) =1{b| b= f(a) for at least one a € Ap}.

On the other hand, if By is a subset of B, we denote by f~!(Bp) the set of all elements
of A whose images under f lie in By; it is called the preimage of By under f (or the
“counterimage,” or the “inverse image,” of Bg). Formally,

1 (Bo) ={a | f(a) € Bo}.

Of course, there may be no points a of A whose images lie in By; in that case, f~1(Bg)
is empty.

Note thatif f : A — B is bijective and By C B, we have two meanings for the
notation f~!(Bo). It can be taken to denote the preimage of By under the function f
or to denote the image of By under the function f~! : B — A. These two meanings
give precisely the same subset of A, however, so there is in fact, no ambiguity.

Some care is needed if one is to use the f and ! notation corr ectly. The opera-
tion f~!, for instance, when applied to subsets of B, behaves very nicely; it preserves
1nclus1ons, unions, intersections, and differences of sets. We shall use this fact fre-
quently. But the operation f, when applied to subsets of A, preserves only inclusions
and unions. See Exercises 2 and 3.

As another situation where care is needed, we note that it is not in general true that
I f(A0)) = Ag and f(F~1(Bg)) = By. (See the following example.) The relevant
rules, which we leave to you to check, are the following: If f : A — B andif Ag C A
and By C B, then

Ao C fN(f(Ag) and  fF(f7'(By)) C Bo.

The first inclusion is an equality if f is injective, and the second inclusion is an equality
if f is surjective.
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EXAMPLE 4.  Consider the function f : R — R given by f(x) = 3x2 4 2 (Figure 2.3).
Let [a, b] denote the closed interval a < x < b. Then

a0, 1) = 7412, 5) =(-1,1),  and
FGH0,5D) = f(UI-1,1D) = [2,5].

Figure 2.3

Exercises

2% L.Letf:A—> B.LetAgC Aand By C B.

D

. (a) Showthat Ag C f ~1(f(Ap)) and that equality holds if f is injective.

(b) Show that f(f~1(Bg)) C Bo and that equality holds if fis surjective.

Let f: A— BandletA; C Aand B; C Bfori =0andi = 1. Show that f~1
preserves inclusions, unions, intersections, and differences of sets:
(a) Bo C Bi= f~'(Bo) C f~(By).

" () 7By By) = FH(Bo) U fH(BY).

) f~N(BoNBy) = f~1(Bo)N f1(By).
() f1(Bo— B1) = f~1(Bo) — f~H(B1).

.Show that f preserves inclusions and unions only:

() Ap C A1 = f(Ag) C f(A1).
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Relations

) F(AoU A1) = F(Ag) U f(A).
g) f(ApN A1) C f(Ap) N f(A1); show that equality holds if f is injective.
(h) f(Aog— A1) D f(Ao) — f(A1); show that equality holds if f is injective.

3. Show that (b), (¢), (), and (g) of Exercise 2 hold for arbitrary unions and inter-
sections.

4. letf:A—> Bandg: B — C.

() If Co C C, show that (g o )™ (Co) = £~ (g7 (Co))-

(b) If f and g are injective, show that g o f is injective.

(c) I g o f is injective, what can you say about injectivity of f and g?
(d) If f and g are surjective, show that g o f is surjective.

(e) If g o f is surjective, what can you say about surjectivity of f and g?
(f) Summarize your answers to (b)—(e) in the form of a theorem.

5. In general, let us denote the identity function for a set C by ic. That is, define
ic : C — C to be the function given by the rule ic(x) = x for all x € C.
Given f : A — B, we say that a function g : B —. A is a left inverse for f if
go f =is;and we say thath : B — A is aright inverse for f if f oh =ip.
(a) Show thatif f has a left inverse, f is injective; and if f has a right inverse,

f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(c) Give an example of a function that has a right inverse but no left inverse.
(d) Can afunction have more than one left inverse? More than one right inverse?
(e) Show that if f has both a left inverse g and a right inverse h, “then £ is
‘bijectiveand g = h = f~!

6. Let f : R — R be the functlon f(x) = x3 — x. By restricting the domain and
range of f appropriately, obtain from f a bijective function g. Draw the graphs
of g and g~1. (There are several possible choices for g.).

§3 Relations

A concept that is, in some ways, more general than that of function is the concept of
a relation. In this section, we define what mathematicians mean by a relation, and
we consider two types of relations that occur with great frequency in mathematics:
equivalence relations and order relations. Order relations will be used throughout the
book; equivalence relations will not be used until §22.

Definition. A relation on a set A is a subset C of the cartesian product A x A.

If C is arelation on A, we use the notation xCy to mean the same thing as (x, y) €
C. We read it “x is in the relation C to y.”

A rule of assignment » for a function f : A — A is also a subset of A x A. Butit
is a subset of a very special kind: namely, one such that each element of A appears as
the first coordinate of an element of r exactly once. Any subset of A x A is a relation
on A.
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EXAMPLE 1. Let P denote the set of all people in the world, and define D C P x P by

the equation
D={xylxisa descendant of y}.

Then D is a relation on the set P. The statements “x is in the relation D to y” and “x is
a descendant of y” mean precisely the same thing, namely, that (x,y) € D. Two other

relations on P are the following:

B ={(x,y)|xhas an ancestor who is also an ancestor of y},

S = {(x,y) | the parents of x are the parents of y}.
We can call B the “blood relation” (pun intended), and we can call S the “sibling relation.”
These three relations have quite different properties. The blood relationship is symmetric,
for instance (if x is a blood relative of y, then y is a blood relative of x), whereas the

descendant relation is not. We shall consider these relations again shortly.

Equivalence Relations and Partitions

An equivalence relation on a set A is a relation C on A having the following three

properties:
) (Reflexivity) xCx for every x in A.
) (Syﬁnnetry) If xCy, then yCx.
(3) (Transitivity) If xCy and yCz, then xCz.
d in Example 1, the descendant relation D is

1ood relation B is not transitive (I am not a
ren are!) The sibling relation S is, however,

EXAMPLE 2.  Among the relations define
neither refiexive nor symmetric, while the b
blood relation to my wife, although my child
an equivalence relation, as you may check.

There is no reason one must use a capital letter—or indeed a letter of any sott—
to denote a relation, even though it is a set. Another symbol will do just as well.
One symbol that is frequently used to denote an equivalence relation is the “tilde”

symbol ~. Stated in this notation, the properties of an equivalence relation become
(1) x ~ x for every X in A.
(2) If x ~ y, theny ~ x.

(3) Ifx ~yandy~ z,thenx ~ z.
There are many other symbols that have been devised to stand for particular equiva-

lence relations; we shall meet some of them in the pages of this book.
Given an equivalence relation ~ on a set A and an element x of A, we define a

certain subset E of A, called the equivalence class determined by x, by the equation

E={yly~x)

Note that the equivalence class E determined by x contains x, since x ~ x. Equiva-

lence classes have the following property:
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Lemma 3.1. Two equivalence classes E and E' are either disjoint or equal.

Proof.  Let E be the equivalence class determined by x, and let E’ be the equivalence

class determined by x’. Suppose that £ N E’ is not empty; let y be a point of E N E’.
See Figure 3.1. We stow that E = E’.

E E'

Figure 3.1

By deﬁnition we have y ~ x and y ~ x'. Symmeuy allows us to conclude that
x ~ yand y ~ x’; from transitivity it follows that x ~ x’. If now w is any point of E,
we have w ~ x by definition; it follows from another application of transitivity that
w ~ x’. We conclude that E C E’.

The symmetry of the situation allows us to conclude that E/ C E as well so that
E=FE.

Given an equivalence relation on a set A, let us denote by & the collection of all
the equivalence classes determined by this relation. The preceding lemma shows that
distinct elements of & are disjoint. Furthermore, the union of the elements of & equals
all of A because every element of A belongs to an equivalence class. The collection &
is a particular example of what is called a partition of A:

Definition. A partition of a set A is a collection of dlsJomt nonempty subsets of A
whose union is all of A.

Studying equivalence relations on a set A and studying partitions of A are really
the same thing. Given any partition £ of A, there is exactly one equivalence relation
on A from which it is derived.

The proof is not difficult. To show that the partition £ comes from some equiv-
alence relation, let us define a relation C on A by setting xCy if x and y belong to
the same element of . Symmetry of C is obvious; reflexivity follows from the fact
that the union of the elements of D equals all of A; transitivity follows from the fact
that distinct elements of D are disjoint. It is simple to check that the collection of
equivalence classes determined by C is precisely the collection D.

To show there is only one such equivalence relation, suppose that C; and C, are
two equivalence relations on A that give rise to the same collection of equivalence
classes D. Given x € A, we show that yC;x if and only if yCox, from which we
conclude that C; = C,. Let E; be the equivalence class determined by x relative to
the relation Cy; let E; be the equivalence class determined by x relative to the relation
C2. Then E) is an element of D, so that it must equal the unique element D of D that
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contains x. Similarly, Eo must equal D. Now by definition, E, consists of all y such
that yCyx; and E2 consists of all y such that yCax. Since E; = D = E», our result is

proved.

EXAMPLE 3. Define two points in the plane to be equivalent if they lie at the same
distance from the origin. Reflexivity, symmetry, and transitivity hold trivially. The collec-
tion & of equivalence classes consists of all circles centered at the origin, along with the set

consisting of the origin alone.

EXAMPLE 4. Define two points of the plane to be equivalent if they have the same
y-coordinate. The collection of equivalence classes is the collection of all straight lines in

the plane parallel to the x-axis.

EXAMPLE 5. Let £ be the collection of all straight lines in the plane parallel to the line
y = —x. Then o is a partition of the plane, since each point lies on exactly one such line.
The partition £ comes from the equivalence relation on the plane that declares the points
(x0, yo) and (xy, y1) to be equivalent if xo + yo = X1 + y1.

EXAMPLE 6.  Let &£’ be the collection of all straight lines in the plane. Then £’ is not
a partition of the plane, for distinct elements of £ are not necessarily disjoint; two lines

may intersect without being equal.

Order Relations _
A relation C on a set A is called an order relation (or a simple order, or a linear order) '
if it has the following properties:

(1) (Comparability) For every x and y in A for which x # vy, either xCy or yCx.

(2) (Nonreflexivity) For no x in A does the relation xCx hold..

(3) (Transitivity) If xCy and yCz, then xCz.
Note that property (1) does not by itself exclude the possibility that for some pair of
elements x and y of A, both the relations xCy and yCx hold (since “or” means “one
or the other, or both”). But properties (2) and (3) combined do exclude this possibil-
ity; for if both xCy and yCx held, transitivity would imply that xCx, contradicting
nonreflexivity.
EXAMPLE 7.  Consider the relation on the real line consisting of all pairs (x, y) of real
numbefs such that x < y. It is an order relation, called the “usual order relation,” on the

real line. A less familiar order relation on the real line is the following: Define xCy if
1% < y2, orif x2 = y? andx < y. You can check that this is an order relation.

EXAMPLE 8.  Consider again the relationships among people given in Example 1. The
blood relation B satisfies none of the properties of an order relation, and the sibling rela-
tion S satisfies only (3). The descendant relation D does somewhat better, for it satisfles
both (2) and (3); however, comparability still fails. Relations that satisfy (2) and (3) occur
often enough in mathematics to be given a special name. They are called strict partial
order relations; we shall consider them later (see §11). :
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As the tilde, ~, is the generic symbol for an equivalence relation, the “less than”
symbol, <, is commonly used to denote an order relation. Stated in this notation, the
properties of an order relation become

(1) If x # y, then eitherx < yory < x.

(2) If x < y, then x # y.

3) Ifx <yandy < z,thenx < z.
We shall use the notation x < y to stand for the statement “either x < y or x = y”;
and we shall use the notation y > x to stand for the statement “x < y.” We write
x<y<ztomean“x <yandy < z”

Definition. If X is a set and < is an order relation on X, and if a < b, we use the
notation (a, b) to denote the set

{x|a<x <D}

it is called an open interval in X. If this set is empty, we call a the immediate prede-
cessor of b, and we call b the immediate successor of a.

Definition. Suppose that A and B are two sets with order relations <4 and <p
respectively. We say that A and B have the same order fype if there is a bijective
correspondence between them that preserves order; that is, if there exists a bijective
function f : A — B such that

a; <p ap = f(a1) <p f(a2).

EXAMPLE 9.  The interval (—1, 1) of real numbers has the same order type as the set R
of real numbers itself, for the function f : (—1, 1) — R given by
x

1—x2

)=

- is an order-preserving bijective correspondence, as you can check. It is pictured in Fig-
ure 3.2. ‘ :

EXAMPLE 10. The subset A = {0} U (1, 2) of R has the same order type as the subset
0.D={x|0=<x<1}
of R. The function f : A — [0, 1) defined by

F) =0,
fx)=x~1 forxe(j,Z)

is the required order-preserving correspondence.

One interesting way of defining an order relation, which will be useful to us later
in dealing with some examples, is the following:
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(c) Given a > 0, let B be the set of all real numbers x such that x2 < a.
Show that B is bounded above and contains at least one positive number.
Let b = sup B; show that b* = a.

(d) Show thatif b and ¢ are positive and b? =2, then b = c.

11. Given m € Z, we say that m is even if m /2 € Z, and m is odd otherwise.

(a) Show that if m is odd, m = 2n + 1 for some n € Z. [Hint: Choose n so that
n<m/2<n+1l]

(b) Show that if p and ¢ are odd, so are p - ¢ and p”, forany n € Z.

(c) Show that if @ > 0 is rational, then ¢ = m/n for some m,n € Z, where
not both m and n are even. [Hint: Let n be the smallest-element of the set
{(x|x€Zyandx-aeZy}]

(d) Theorem. /2 Ls irrational.

§5 Cartesian Products

We have already defined what we mean by the cartesian product A x B of two sets.
Now we introduce more general cartesian products.

Definition. Let 4 be a nonempty collection of sets. An indexing function for 4 is
a surjective function f from some set J, called the index set, to 4. The collection o,
together with the indexing function f, is called an indexed family of sets. Given
a € J, we shall denote the set f(a) by the symbol A,. And we shall denote the
indexed family itself by the symbol

{Aoz}ae./,

'wh1ch is read “the famlly of all Ay, as o ranges over J.” Sometimes we wr ite melely
{Ay}, if it is clear what the index set is. :

Note that although an indexing function is required to be surjective, it is not re-
quired to be injective. 1t is entirely possible for A, and Ag to be the same set of s,
even though « # 8.

One way in which indexing functions are used is to give a new notation for arbi-
trary unions and intersections of sets. Suppose that f : J — 4 is an indexing function
for #A; let Ay denote f (o). Then we define :

U Ag = {x | foratleastone @ € J,x € Ay},
ael

and

ﬂAa_{xlfmcveLyaeJ x € Ayl

wel
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These are simply new notations for previously defined concepts; one sees at once
(using the surjectivity of the index function) that the first equals the union of all the
elements of 4 and the second equals the intersection of all the elements of .

Two especially useful index sets are the set {1, ..., n} of positive integers from 1
to n, and the set Z,. of all positive integers. For these index sets, we introduce some
special notation. If a collection of sets is indexed by the set {1, ..., n}, we denote the
indexed family by the symbol {A1, ..., A,}, and we denote the union and intersection,
respectively, of the members of this family by the symbols

AjU---UA, and A1 N---NA,.

In the case where the index set is the set Z, we denote the indexed family by the
symbol {A;, Az, ...}, and the union and intersection by the respective symbols

ATUAU .- and AjNAN--..

Definition. Let m be a positive integer. Given a set X, we deﬁne an m-tuple of
elements of X to be a function

x:{1,...,m} - X.

If x is an m-tuple, we often denote the value of x at i by the symbol x; rather than x(i)
and call it the ith coordinate of x. And we often denote the function X itself by the
symbol

(x1, ...y xm).

Now let {A1, ..., Ap) be a family of sets indexed with the set {1, ... ,m}). Let X =
A1 U---UA,,. We define the cartesian product of this indexed family, denoted by

m
HA,‘ or Al, Xoee- X,Amz
il

to be the set of all m-tuples (x1, ..., x,) of elements of X such that x; € A; for each i.

EXAMPLE 1.  We now have two definitions for the symbol A x B. One definition is,
of course, the one given earlier, under which A x B denotes the set of all ordered pairs
(a,b) such thata € A and b € B. The second definition, just given, defines A x B as
the set of all functions x : {1,2} — A U B such that x(1) € A and x(2) € B. There
is an obvious bijective correspondence between these two sets, under which the ordered
pair (a, b) corresponds to the function x defined by x(1) = a and x(2) = b. Since we
commonly denote this function x in “tuple notation” by the symbol (a, b), the notation
itself suggests the correspondence. Thus for the cartesian product of two sets, the general
definition of cartesian product reduces essentially to the earlier one.

EXAMPLE 2. How does the cartesian product A x B x C differ from the cartesian products
A x (B xC)and (A x B) x C? Very little. There are obvious bijective correspondences
between these sets, indicated as follows:

(a,b,c) < (a, (b,¢)) < ((a, D), c)..
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Definition. Given a set X, we define an w-fuple of elements of X to be a function
X:Zy — X;
we also call such a function a sequence, or an infinite sequence, of elements of X. If

X is an w-tuple, we often denote the value of x at i by x; rather than x(i), and call it the
ith coordinate of x. We denote X itself by the symbol

(x1,xp,...) or (xn)nez, -
Now let {A1, A?’,. .} be a family of sets, indexed with the positive integers; let X be
the union of the sets in this family. The car tesian product of this indexed family of
sets, denoted by

H Al-‘ or A XAy X---,

i€l )
is defined to be the set of all w-tuples (x1, X2, . ..) of elements of X such that x; € A;
for each i.

Nothing in these definitions requires the sets A; to be different from one another.

Indeed, they may all equal the same set X. In that case, the cartesian p1oducl A1 X

- X Ap is just the set of all m- tuples of elements of X, which we denote by X™.
Slmﬂeuly, the product A; x Az x --- is just the set of all w-tuples of elements of X,

which we denote by X¢. :
Later we will define the cartesian p1oduct of an arbitrary indexed family of sets.

EXAMPLE 3. If R is the set of real numbers, then R™ denotes the set of all m-tuples of
real numbers; it is often called euclidean m-space (although Euclid would never recognize
it). Analogously, R® is sometimes called “infinite-dimensional euclidean space’; it is the
set of all w-tuples (x3, X7, . . . ) of real numbers, that is, the set of all functions x : Z; — R.

Exercises

1. Show there is a bijective correspondence of A x B with B x A.
2. (a) Show thatif n > 1 there is bijective correspondence of

Ay x---x A,  with (4 X - X Apm1) X Ap.

(b) Given the indexed family {A1, Aa, ...}, let B; = Agj—1 x Ay; for each
positive integer i. Show there is bijective conespondence of Ay x Az x -
with By x By X
3.1etA=A4A1 X Ay X -~ andB:Bl X By X +--.
(a) Show that if B; C A; for all i, then B C A. (Strictly speaking, if we are
given a function mapping the index set Z into the union of the sets B;, we
rmust change its range before it can be considered as a function mapping Z.-
into the union of the sets A;. We shall ignore this technicality when dealing
with cartesian products).
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(b) Show the converse of () holds if B is nonempty.

(c) Show that if A is nonempty, each A; is nonempty. Does the converse hold?
(We will return to this question in the exercises of §19.)

(d) What is the relation between the set A U B and the cartesian product of the
sets A; U B;? What is the relation between the set A N B and the cartesian
product of the sets A; N B;i?

4. Letm,n € Zy. Let X # .

(a) If m < n, find an injective map f : xXm — X",
(b) Find a bijective map g : X™ x X" — xmtn,

(¢) Find an injective map h : X" — Xe.

(d) Find a bijective map k : X" x X — X @,

(e) Find a bijective map / : X¢ x X — Xe.

(f) If A C B, find an injective map m : (A®Y* — B®.

5. Which of the following subsets of R can be expressed as the cartesian product
of subsets of R? : ‘
(@) {x|x; is an integer for all i}.

(b) {x|x; >iforalli}.
(¢) {x|x;isan integer for alli > 100}.
(d) {x]x2=2x3}.

§6 Finite Sets

Finite sets and infinite sets, countable sets and uncountable sets, these are types of sets
that you may have encountered before. Nevertheless, we shall discuss them in this
section and the next, not only to make sure you understand them thoroughly, but also
to elucidate some particular points of logic that will arise later on. First we consider
finite sets. : ‘

Recall that if n is a positive integer, we use S, to denote the set of positive integers
less than n; it is called a section of the positive integers. The sets S are"the prototypes
for what we call the finite sets.

Definition. A set is said to be finite if there is a bijective correspondence of A with
some section of the positive integers. That is, A is finite if it is empty or if there is a
bijection

f:A—{1,....,n}

for some positive integer 7. In the former case, we say that A has cardinality 0; in the
latter case, we say that A has cardinality n.

For instance, the set {1, ..., n} itself has cardinality n, for it is in bijective corre-
spondence with itself under the identity function. '
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Now note carefully: We have not yet shown that the cardinality of a finite set is
uniquely determined by the set. It is of course clear that the empty set must have
cardinality zero. But as far as we know, there might exist bijective correspondences
of a given nonempty set A with two different sets {1,...,n} and {1,...,m}. The
possibility may seem ridiculous, for it is like saying that it is possible for two people
to count the marbles in a box and come out with two different answers, both correct.
Our experience with counting in everyday life suggests that such is impossible, and in
fact this is easy to prove when n is a small number such as 1, 2, or 3. Buta direct proof
when 7 is 5 million would be impossibly demanding.

' Even empirical demonstration would be difficult for such a large value of n. One
might, for instance, construct an experiment by taking a freight car full of marbles and
hiring 10 different people to count them independently. If one thinks of the physical
problems involved, it seems likely that the counters would not all arrive at the same
answer. Of course, the conclusion one could draw is that at least one person made a
mistake. But that would mean assuming the correctness of the result one was trying
to demonstrate empmc’ﬂly An alternative explanation could be that there do exist
bijective correspondences between the glven set of marbles and two different sections
of the positive integers.

In real life, we accept the first explanation. We simply take it on faith that our

~ experience in counting comparatively small sets of objects demonstrates a truth that

holds for arbitrarily large sets as well.

However, in mathematics (as opposed to real life), one does not have to take this
statement on faith. If it is formulated in terms of the existence of bijective correspon-
dences rather than in terms of the physical act of counting, it is capable of mathemat-
ical proof. We shall prove shortly that if n # m, there do not exist leCCtIVC functions
mapping a given set A onto both the sets {1, ..., n} and {1, . ,ml

There are a number of other “intuitively obv1ous” facts about finite sets that are

~ capable of mathematical proof; we shall prove some of them in this section and leave

the rest to the exercises. Here is an easy fact to start with:

Lemma 6.1. Let n be a positive integer. Let A be a set; let ag be an element of A.
Then there exists a bijective correspondence f of the set A with the set {1, ...,n+ 1}
if and only if there exists a bijective correspondence g of the set A — {ao} with the set

{1,...,n}.
Proof. There are two implications to be proved. Let us first assume that there is a
bijective correspondence

g:A—{ao}'~—>{1,...,n}.

We then define a function f : A — {1,..., 12 —}— 1} by setting
f(x)=gkx) forx € A—{ao},
flag)=n+1.

One checks at once that f is bijective.
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Exercises

1. (2) Make alist of all the injective maps
fi{L,2,3} — (1,2,3,4}.
Show that none is bijective. (This constitutes a direct proof that a set A of
cardinality three does not have cardinality four.)
(b) How many injective maps '
.8 — {1, 10}
~ are there? (You can see why one would not wish to try to prove directly that
there is no bijective correspondence between these sets.)
2. Show that if B is not finite and B C A, then A is pot finite.
3. Let X be the two-element set {0, 1}. Find a bijective correspondence between
X and a proper subset of itself.

4. Let A be a nonempty finite simply ordered set.
(a) Show that A has a largest element. [Hint: Proceed by induction on the

cardinality of A.]
(b) Show that A has the order type of a section of the positive integers.

5. If A x B is finite, does it follow that A and B are finite?
6. () Let A ={1,...,n}. Show there is a bijection of & (A) with the cartesian -
product X n where X is the two-element set X = {0, 1}.
(b) Show that if A is finite, then P(A) is finite.
7 Tf A and B are finite, show that the set of all functions f : A — B is finite.

§7 Countable and Uncountable Sets

Just as sections of the positive integers are the prototypes for the finite sets, the set of
y infinite sets. In

all the positive integers is the prototype for what we call the countabl
this section, we shall study such sets; we shall also construct some sets that are neither

finite nor countably infinite. This study will lead us into a discussion of what we mean
by the process of “inductive definition.”

Definition. A set A is said to be infinite if it is not finite. It is said to be countably
infinite if there is a bijective correspondence
f:A— L.
EXAMPLE 1.  The set Z of all integers is countably infinite. One checks easily that the
function f : Z — Z. defined by

. 2n ifn >0,
foy = ‘—211 +1 if n <0

is a bijection.
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EXAMPLE 2.  The product Z4 x Z. is countably infinite. If we represent the elements of
the product Z. x Z.. by the integer points in the first quadrant, then the left-hand portion
of Figure 7.1 suggests how to “count” the points, that is, how to put them in bijective
correspondence with the positive integers. A picture is not a proof, of course, but this
picture suggests a proof. First, we define a bijection f : Zy % %y ~> A, where A is the
subset of Z. x Z. consisting of pairs (x, y) for which y < x, by the equation

].(X,y) = («V+)’~_ 17 }')

Then we construct a bijection of A with the positive integers, defining g : A — Z.. by the
formula '

1
glx,y) = E(x —Dx+y.

We leave it to you to show that f and g are bijections.
Another proof that Z4 'x Z, is countably infinite will be given later.

ao\o ° . )
NN L o
NN AL
CNONNN L

" Figure 7.1

Definition. A set is said to be countable if it is either finite or countably infinite. A
set that is not countable is said to be uncountable. :

There is a very useful criterion for showing that a set is countable. It is the follow-
ing: '

Theorem 7.1. Let B be a nonempty set. Then the following are equivalent:
(1) B is countable.
(2) There is a surjective function f : Z4 — B.
(3) There is an injective function g : B — Z.

Proof. (1) = (2). Suppose that B is countable. If B is countably infinite, there is
a bijection f : Z4 — B by definition, and we are through. If B is finite, there is a
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bijection 4 : {1,...,n} = B for some n '_>: 1. (Recall that B # &.) We can extend A
to a surjection f : Z4 — B by defining '

. h(G) forl<i=<n,
fiy= {0
h(l) fori > n.

(2) => (3).Let f :Zy — Bbea surjection. Define g : B — Z. by the equation
g(b) = smallest element of f “Typy.

Because f is surjective, f —1({b}) is nonempty; thus g is well defined. The map g is
injective, for if b # b, the sets f ~1({b}) and f ~1({p'}) are disjoint, so their smallest
elements are different. : :

(3) = (1). Letg : B — Z4 be an injection; we wish to prove B is countable.
By changing the range of g, we can obtain a bijection of B with a subset of Z... Thus
to prove our result, it suffices to show that every subset of Z, is countable. So let C
be a subset of Z...

If C is finite, it is countable by definition. So what we need to prove is that every
infinite subset C of Z is countably infinite. This statement is certainly plausible. For
the elements of C can easily be arranged in an infinite sequence; one simply takes the
set Z. in its usual order and “erases” all the elements of Z. that are not in C'!

The plausibility of this argument may make one overlook its informality. Provid-
ing a formal proof requires a certain amount of care. We state this result as a separate
lemma, which follows. » ' B

Lemma 7.2. IfC is an infinite subset of Z, then C is countably infinite.

Proof. We define a bijection h : Zy — C. We procéed by induction. Define 4 (1) to
be the smallest element of C; it exists because every nonempty subset C of Z4 has a
smallest element. Then assuming that h(1), ..., h(n — 1) are defined, define

. h(n) = smallest element of [C — r({l,...,n— 1Dl

The set C —h({1,...,n—1}) isnot émpty; for if it were empty, then i : {1,...,n—
1} — C would be surjective, so that C would be finite (by Corollary 6.7). Thus h(n)
is well defined. By induction, we have defined A (n) for all n € L.

To show that % is injective is easy. Given m < n, note that h(m) belongs to the set
R({1,...,n —1}), whereas h(n), by definition, does not. Hence h(n) # h(m).

To show that & is surjective, let ¢ be any element of C; we show that ¢ lies in the
image set of k. First note that h(Z,) cannot be contained in the finite set {1,...,c},
because /h(Z.) is infinite (since  is injective). Therefore, there is an n in Z4., such
that h(n) > c. Let m be the smallest element of Z, such that i(m) > c. Then forall -
i < m, we must have k(i) < c. Thus, ¢ does not belong to the set ({1, ...,m — .
Since h(m) is defined as the smallest element of the set C — h({1,...,m — 1}), we
must have h(m) < c. Putting the two inequalities together, we have k(m) = ¢, as
desired. |
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This principle is the one we actually used in the proof of Lemma 7.2. You can
simply accept it on faith if you like. It may however be proved rigorously, using the
principle of induction. We shall formulate it more precisely in the next section and
indicate how it is proved. Mathematicians seldom refer to this principle specifically.
_ They are much more likely to write a proof like our proof of Lemma 7.2 above, a proof
in which they invoke the “induction principle” to define a function when what they are

really using is the principle of recursive definition. We shall avoid undue pedantry in
this book by following their example.

Corollary 7.3. A subset of a countable set is countable.

Proof. Suppose A C B, where B is countable. There is an injection f of B into Z..;
the restriction of f to A is an injection of A into Z.. |
Corollary 7.4. The set Zy. X Ziy 1S countably infinite.

Proof. In view of Theorem 7.1, it suffices to construct an injective map f : Zy %
Zy — L. We define f by the equation

f(n,m)=2"3".

Tt is easy to check that f is injective. For suppose that 273" = 2P39. If n < p, then
m _— 2P=n30 contradicting the fact that 3™ is odd for all m. Therefore, n = p. As

a result, 3" = 39, Then if m < g, it follows that 1 = 397", another contradiction.
]

Hencem = g.
EXAMPLE 3. The set Q4 of positive rational numbers is countably infinite. For we can
define a surjection g : Zy X Zy — Q4 by the equation

g(n,m) =m/n.

Because Zy x Zy is countable, there is a surjection f @ Zy — Zy X Z.. Then the
composite g o f : Zy — Qi 152 surjection, so that Q4 is countable. And, of course, Q4

is infinite because it contains Z..
We leave it as an exercise to show the set Q of all rational numbers is countably infinite.

Theorem 7.5. A countable union of countable sets is countable.

Proof. Let {Ap}nes be an indexed family of countable sets, ‘where the index set J is
either {1, ..., N} or Z,. Assume that each set A, is nonempty, for convenience; this

assumption does not change anything.
Because each A, is countable, we can choose, for each n, a surjective function

fn : Zy — A, Similarly, we can choose a surjective function g : Z4 — J. Now
define

h:Zy XLy — UA”

neld
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by the equation
h(k, m) = fg(r)(m).

It is easy to check that / is surjective. Since Z4 X Z is in bijective correspondence
with Z.., the countability of the unjon follows from Theorem 7.1. |

Theorem 7.6. A finite product of countable sets is countable.

Proof  First let us show that the product of two countable sets A and B is countable.
The result is trivial if A or B is empty. Otherwise, choose surjective functions f :
Z. — Aand g : Z4 — B. Then the function & : Z4 x Z4 — A x B defined by the
equation h(n, m) = (f(n), g(m)) is surjective, so that A X B 1s countable.

In general, we proceed by induction. Assuming that Ay x - -- x A,_; is countable
if each A; is countable, we prove the same thing for the product A; x --- X A, First,
note that there is a bijective correspondence

g A1 X x Ay — (A X -+ X Ap1) X Ay
defined by the equation
glxt, ..., xn) = ((x1, .-+, Xp—1)s Xn).

Because the set A X - -+ X A,_1 is countable by the induction assumption and A, is
countable by hypothesis, the product of these two sets is countable, as proved in the
preceding paragraph. We conclude that Ay x --- X A, is countable as well. ]

It is very tempting to assert that countable products of countable sets should be
countable: but this assertion is in fact not true:

Theorem 7.7. Let X denote the two element set {0, 1}. Then the set X is uncount-
able.

Proof. We show thaf, givén any funétibn
g: %y — X°,
g is not surjective. For this purpose, let us denote g(n) as follows :
g(n) = (Xn1, Xn2, Xn3s -« - Xnms -+ )s

where each x;; is either 0 or 1. Then we define an element y= 0,y .., yn, ced)
of X by letting : '

0 ifxy, =1,

=1 ifx,, = 0.
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for each x € J, where Sy is the section of J by x.
Proof: -

(a) If h and k map sections of J, or all of J, into C and satisfy () for all x in
their respective domains, show that 4 (x) = k(x) for all x in both domains.

(b) 1f there exists a function 4 : S, — C satisfying (), show that there exists a
function k : S, U {a} — C satisfying ().

(¢) If K C J and for all @ € K there exists a function kg : S, — C satisfying
(), show that there exists a function

7c:USO,——>C

satisfying ().

(d) Show by transfinite induction that for every 8 € J, there exists a function
hg : Sg — C satisfying (x). [Hint: If B has an immediate predecessor «,
then Sg = Sy U {}. If not, Sg is the union of all S, with & < B.]

(e) Prove the theorem.

11. Let A and B be two sets. Using the well-ordering theorem, prove that either they
have the same cardinality, or one has cardinality greater than the other. [Hint: If
there is no surjection f : A — B, apply the preceding exercise.]

*§11 The Maximum Principle’

We have already indicated that the axiom of choice leads to the deep theorem that ev-
ery set can be well-ordered. The axiom of choice has other consequences that are even
more important in mathematics. Collectively referred to as “maximum principles,”
they come in many versions. Formulated independently by a number of mathemati-
cians, including F: Hausdorff, K. Kuratowski, S. Bochner, and M. Zorn, during the

‘years 1914-1935, they were typically proved as consequences of the well-ordering

theorem. Later, it was realized that they were in fact equivalent to the well-ordering
theorem. We consider several of them here.
First, we make a definition. Given a set A, a relation < on A is called a strict
partial order on A if it has the following two properties:
(1) (Nonreflexivity) The relation @ < a never holds.
(2) (Transitivity)Ifa < band b < ¢, thena < c.
These are just the second and third of the properties of a simple order (see §3); the
comparability property is the one that is omitted. In other words, a strict partial order
behaves just like a simple order except that it need not be true that for every pair of
distinct points x and y in the set, either x < y or y < x.
If < is a strict partial order on a set A, it can easily happen that some subset B
of A is simply ordered by the relation; all that is needed is for every pair of elements
of B to be comparable under <.

TThis section will be assumed in Chapters 5 and 14.
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Now we can state the following principle, which was first formulated by Hausdorff
in 1914.

Theorem (The maximum principle). Let A be a set: Jet < be a strict partial order
on A. Then there exists a maximal simply ordered subset B of A.

Said differently, there exists a subset B of A such that B is simply ordered by <
and such that no subset of A that properly contains B is simply ordered by <.

EXAMPLE 1. If A is any collection of sets, the relation “is a proper subset of” is a
strict partial order on #. Suppose that 4 is the collection of all circular regions (interiors
of circles) in the plane. One maximal simply ordered subcollection of s consists of all
circular regions with centers at the origin. Another maximal simply ordered subcollection
consists of all circular regions bounded by circles tan gent from the right to the y-axis at the
origin. See Figure 11.1.

Figure 11.1

EXAMPLE 2. If (xg, yo) and (x1, y;) are two points of the plane R?, define
(x0, y0) < (x1, 1)

if yo = y1 and xo < x;. This is a partial ordering of R? under which two points are
comparable only if they lie on the same horizontal line. The maximal simply ordered sets
are the horizontal lines in R2.

One can give an intuitive “proof” of the maximum principle that is rather appeal-
ing. It involves a step-by-step procedure, which one can describe in physical terms as
follows. Suppose we take a box, and put into it some of the elements of A according
to the following plan: First we pick an arbitrary element of A and put it in the box.
Then we pick another element of A. If it is comparable with the element in the box,
we put it in the box too; otherwise, we throw it away. At the general step, we will have
a collection of elements in the box and a collection of elements that have been tossed
away. Take one of the remaining elements of A. If it is comparable with everything
in the box, toss it in the box, too; otherwise, throw it away. Similarly continue. After
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you have checked all the elements of A, the elements you have in the box will be com-
parable with one another, and thus they will form a simply ordered set. Every element
not in the box will be noncomparable with at least one element in the box, for that was
why it was tossed away. Hence, the simply ordered set in the box is maximal, for no
larger subset of A can satisfy the comparability condition. v

Now of course the weak point in the preceding “proof” comes when we said,
“After you have checked all the elements of A”” How do you know you ever “get
through” checking all the elements of A? If A should happen to be countable, it is not
hard to make this intuitive proof into a real proof. Let us take the countably infinite
case; the finite case is even easier. Index the elements of A bijectively with the positive
integers, so that A = {ay, aa ... }.  This indexing gives a way of deciding what order
to test the elements of A in, and how to know when one has tested them all.

Now we define a function h : Z4 — {0, 1}, by letting it assign the value 0 to
i if we “put @; in the box,” and the value 1 if we “throw a; away.” This means that
h(1) =0, and for i > 1, we have k(i) = 0 if and only if ¢; is comparable with every
element of the set '

{aj | j <iand h(j)=0}.
By the principle of recursive definition, this formula determines a unique function
h:Z4 — {0, 1}. It is easy to check that the set of those a; for which i(j) = Oisa
maximal simply ordered subset of A.

If A is not countable, a variant of this procedure will work, if we allow ourselves to
use the well-ordering theorem. Instead of indexing the elements of A with the set Z,
we index them (in a bijective fashion) with the elements of some well-ordered set J, so
that A = {ay | @ € J}. For this we need the well-ordering theorem, so that we know
there is a bijection between A and some well-ordered set J. Then we can proceed as
in the previous paragraph, letting o replace i in the argument. Strictly speaking; you
need to generalize the principle of recursive definition to well-ordered sets as well, but
that is not particularly difficult. (See the Supplementary Exercises.)

Thus, the well-ordering theorem implies the maximum principle.

Although the maximum principle of Hausdorff was the first to be formulated and
is probably the simplest to understand, there is another such principle that is nowadays
the one most frequently quoted. It is popularly called “Zorn’s Lemma,” although Ku-
ratowski (1922) and Bochner (1922) preceded Zorn (1935) in enunciating and proving
versions of it. For a history and discussion of the tangled history of these ideas, see [C]
or [Mo]. To state this principle, we need some terminology.

Definition. Let A be a set and let < be a strict partial order on A. If B is a subset
of A, an upper bound on B is an element ¢ of A such that for every b in B, either
b=corb < c. Amaximal element of A is an element m of A such that for no
element a of A does the relation m < a hold.

Zorn’s Lemma. Let A be a set that is strictly partially ordered. If every simply
ordered subset of A has an upper bound in A, then A has a maximal element.
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Zorn’s lemma is an easy consequence of the maximum principle: Given A, the
maximum principle implies that A has a maximal simply ordered subset B. The hy-
pothesis of Zorn’s lemma tells us that B has an upper bound ¢ in A. The element ¢ is
then automatically a maximal element of A. For if ¢ < d for some element d of A,
then the set B U {d}, which properly contains B, is simply ordered because b < d for
every b € B. This fact contradicts maximality of B. ‘

Itis also true that the maximum principle is an easy consequence of Zorn’s lemma.
See Exercises 5-7. :

One final remark. We have defined what we mean by a strict partial order on a set,
but we have not said what a partial order itself is. Let < be a strict partial order on a
set A. Suppose that we define a < bifeithera < b or a = b. Then the relation < 1is
called a partial order on A. For example, the inclusion relation C on a collection of
sets is a partial order, whereas proper inclusion is a strict partial order.

Many authors prefer to deal with partial orderings rather than strict partial order-
ings; the maximum principle and Zorn’s lemma are often expressed in these terms.
Which formulation is used is simply a matter of taste and convenience.

Exercises

1. If g and b are real numbers, definea < b if b — g is positive and rational. Show
this is a strict partial order on R. What are the maximal simply ordered subsets?

2. (a) Let < be a strict partial order on the set A. Define a relation on A by letting
a X bifeithera < b ora = b. Show that this relation has the follqwing
properties, which are called the partial order axioms:

() a<aforalla € A.
‘() axbandb=<a=—a=10.
() a<xbandb<c=a=<c. _
(b) Let P be arelation on A that satisfies properties (i)—(iii). Define a relation S

on A by letting aSb if aPb and a # b. Show that S is a strict partial order
on A. ' ’

3. Let A be a set with a strict partial order <; let x € A. Suppose that we wish to
find a maximal simply ordered subset B of A that contains x. One plausible way

of attempting to define B is to let B equal the set of all those elements of A that
are comparable with x;

B={y|ye Aandeitherx < yory < x}.

But this will not always work. In which of Examples 1 and 2 will this procedure
succeed and in which will it not?

4. Given two points (xg, yo} and (x, y;) of R2, define

(x0, y0) < (x1, y1)




