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Are operator algebras Banach algebras? 

David P. Blecher 

ABSTRACT. We discuss some aspects of the current state of the study of alge-
bras of operators on a Hilbert space, from the Banach algebraic perspective. 
The advent of operator space theory has given a recent impetus to the gen-
eral theory of such operator algebras. To illustrate the situation, we focus on 
some recent results mainly obtained by the author and Le Merdy, and present 
several 'test questions', which point out the interactions between the Banach 
algebraic and the operator space structures involved. 

1. Introduction 

Operator algebras form a particularly nice class of Banach algebras, and con-
stitute a pleasant setting for many Banach algebraic ideas. The advent of operator 
space theory has given a recent impetus to the general theory of nonselfadjoint 
operator algebras (see e.g. our forthcoming text [4] with Christian Le Merdy on 
operator algebras and their modules from an operator space perspective). With 
the operator space viewpoint in mind, we believe that now is a good time to look 
for fresh applications of Banach algebraic ideas to operator algebras. In the present 
article, we illustrate in a nontechnical way, and with some test questions, the cur-
rent position that operator algebras hold amongst the Banach algebras1 • In Section 
2 we collect a group of related problems which it is about time were solved, many 
of which illustrate the question in our title. Some of these questions may even not 
be hard, with the right approach. 

We begin with some background and notation. Throughout His a (complex) 
Hilbert space. A concrete operator space is a (linear) subspace of B(H). The set 
Mn(B(H)) of n x n operator matrices has a natural norm via the isomorphism 
Mn(B(H)) ~ B(H(n)). An abstract operator space is a vector space X, with a 

2000 Mathematics Subject Classification. Primary 47L30, 47L20; Secondary 47L45. 
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1This article was first intended to be a summary of the talk we gave at this conference: a 

survey of our work on operator space multipliers, and their applications to operator algebras, 
particularly those of a Banach algebraic flavor. However in the interim we have summarized this 
work elsewhere. In particular, in the short survey [6], aimed at a general audience, the reader will 
find the essence of our Banach Algebras '03 talk. 
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54 DAVID P. BLECHER 

norm II · lin on Mn(X) for all n EN, such that 

II [ ~ ~ ] lln+m = max{llxlln, IIYIIm} 

for x E Mn(X), y E Mm(Y), and a, (3 E Mn. A complete contraction is a linear 
map T : X ---> Y satisfying 

II[T(Xij)JIIn :::; ll[xij]lln, 
for all n E N, [Xij] E Mn(X). A complete isometry satisfies the same relation, 
with ':::;'replaced by'='. Ruan's theorem [9] states that up to complete isometry, 
abstract operator spaces are the same thing as concrete operator spaces. Every 
Banach space X becomes an operator space in canonical ways. If X is an oper-
ator space then X*, equipped with matrix norms coming from the identification 
Mn(X*) ~ CB(X, Mn), is called the dual operator space of X. See e.g. [2] for some 
basic properties of this duality. 

For simplicity in this paper, we will only consider algebras which are unital, 
unless we say otherwise, and we will assume that the identity or unit has norm 
1. By a concrete operator algebra we mean a closed subalgebra A of B(H). For 
simplicity, and for purposes of comparison, we define a Banach algebra to be a unital 
algebra A which is also a Banach space, such that llabll :::; llallllbll for a, bE B. This 
suggests defining an operator Banach algebra to be a unital algebra which is also an 
operator space, such that llablln:::; llallnllblln, for all n EN and a, bE Mn(A). Here 
ab is the usual product of matrices. This looks innocent enough, a natural variant 
of the definition of a Banach algebra. But in fact: 

THEOREM 1.1. (Blecher, Ruan and Sinclair) Up to completely isometric homo-
morphism, operator Banach algebras are exactly the operator algebras. 

The question at hand is: are operator algebras Banach algebras, or are they 
operator Banach algebras? Of course they are both; but we want to know if the 
'matrix norms' above are really necessary in the study of operator algebras. Of 
course this question depends largely on the particular applications or questions 
one has in mind. The situation in this regard for operator algebras is still being 
ironed out, and one of the purposes of Section 2 of this article is to emphasize some 
questions which might tip the balance here. The drawback of the operator space 
approach, for those unused to this subject, is that the family {ll·lln}n~2 seems to be 
a heavy additional burden. In the authors experience, the matrix norms are rarely 
burdensome. Indeed usually if a result involving operator spaces can be proved for 
the 'first level' (n = 1), then the higher levels will follow in a routine way. 

Although the definitions of Banach algebras and operator Banach algebras are 
so similar, and although Banach algebraic ideas and techniques always have, and 
always will, play a key role in the study of operator algebras, it is clear that the 
ensuing theories are for the most part divergent. Indeed one may argue that op-
erator algebras are much more like C* -algebras than they are like general Banach 
algebras (at least for many questions)2. If one likes, one may view operator alge-
bras as the 'noncommutative function algebras'. By a function algebra' we mean 

2To avoid a possible confusion, we remark in passing that there is another important 'operator 
space variant' of the definition of a Banach algebra, which is much more like general Banach 
algebras. Namely one may consider an algebra A which is also an operator space, such that 
ll[aijbkdlln S llallnllblln, for all n E .N and a, b E Mn(A). The i, k here index rows, and the 
j, l index columns. We mentioned these algebras in [2], and a few years later they were closely 
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here a subalgebra of a commutative C* -algebras; and thus every function algebra 
is an operator algebra. Of course function algebras are often closer in spirit to 
C(K) spaces than they are to general commutative Banach algebras, and a similar 
principle holds in the noncommutative case. For example, a main tool for studying 
operator algebras is Arveson's noncommutative version of the Shilov boundary [1 J, 
sometimes known as the C* -envelope. For many more details about this and other 
topics concerning operator space aspects of operator algebras, better referencing of 
the literature, etc., we of course recommend [4]. 

2. Conditional expectations and the duality of operator algebras 

Operator algebras have very many pleasant properties that general Banach 
algebras do not share. For example, in [5] we showed the following variant of an 
important theorem of Tomiyama on conditional expectations on C*-algebras (see 
e.g. [15, Theorem III.3.4]): 

THEOREM 2.1. Let A be an operator algebra, and let P: A-+ A be a completely 
contractive projection (i.e. PoP = P) with P(1) = 1, and whose range is a 
subalgebra B of A. Then P is a 'conditional expectation', by which we mean that 

P(b1ab2) = b1P(a)b2 

for all a E A,b1,b2 E B. 

It can be seen easily that for function algebras, the map Pin Theorem 2.1 is 
completely contractive if it is contractive. Indeed, this is true for any linear map 
into a subspace of a C(K) space (this is an easy exercise, or see e.g. [9, Proposition 
2.2.6)). Hence in this case Theorem 2.1 holds with the word 'completely' dropped. 
This is also known to be true for C* -algebras (Tomiyama's result does not require 
complete contractivity). Thus one may ask: 

QUESTION 1. For which classes of Banach algebras (or for which contractive 
projections P on a fixed Banach algebra) does Theorem 2.1 hold with the word 
'completely' dropped? In particular, does it hold for the class of operator algebras? 

The class of all Banach algebras certainly does not have the property in Ques-
tion 1, as one may see by experimenting with three dimensional examples: 

EXAMPLE. Let B be an algebra spanned by three idempotents {1, a, b}, where 
ab = ba = a. Defining II.X1 + J.La + vbll = I .XI+ IJ.LI +I vi, for .X, J.L, v E C, makes B a 
Banach algebra. However B does not have the above property, as one may see by 
taking P(Al + J.La + vb) = .X1 + J.La. 

Unfortunately, one can show that there is no operator algebra norm on B for 
which P is contractive (we omit the elementary but tedious computation, which 
relies on the special structure of idempotent operators on a Hilbert space). However 
it seems likely to us that a clever variant of this example should yield an operator 
algebra without the property in Question 1. 

investigated by Ruan and coauthors. These algebras have been called quantized Banach algebros 
in [9], and are now extremely important in noncommutative harmonic analysis for example (see 
e.g. the articles of Spronk and Runde in the present volume). It is easy to see that every Banach 
algebra A is one of these algebras, for a canonical operator space structure on A. However these 
algebras are generally unrelated to operator algebras, at least from the perspective of the current 
paper, and hence they will not be mentioned again. 
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Another nice property operator algebras possess is Arens regularity. Indeed C*-
algebras have this property, and the property is hereditary. We refer the reader to 
any book on Banach algebras for definitions (see e.g. [7]); and to [8] for a multitude 
of details on Arens regularity and the Arens product. 

A case of Question 1 that is of interest occurs when B is an Arens regular 
Banach algebra which is a dual Banach space. The canonical inclusion B* ---+ B* 
dualizes to give a contractive projection Q from B** onto the copy of B, viewed 
as a subalgebra of B**. Clearly Q(1) = 1. Le Merdy studied this situation in [13]; 
and observed most of the following (see also the proof of [5, Corollary 5.2]): 

PROPOSITION 2.2. Let B, Q be as in the last paragraph. Then the product on 
B is separately weak* continuous if and only if Q is a 'conditional expectation' in 
the sense of 2.1, and if and only if Q is a homomorphism. 

In the light of this we obtain as a 'special case' of Question 1: 

QuESTION 2. Which Arens regular Banach algebras, which are also dual spaces, 
necessarily have a separately weak* continuous product? 

We imagine that some Banach algebraists must have encountered the last ques-
tion, and have interesting examples at hand. Recently, Lau has communicated to 
us an example which he found together with Dales, of an Arens regular (unital) 
semigroup algebra £1(8) whose product is not separately weak* continuous (see also 
[16]). Indeed Lau has mentioned to us a useful criterion for when the product on 
£1 (8) is not separately weak* continuous. In contrast, Question 2 has an affirmative 
answer for unital function algebras, by the remark above Question 1. 

Godefroy and Iochum proved in [10] that any Banach algebra product on the 
second dual of a C* -algebra A (we keep the same identity), is necessarily separately 
weak* continuous. It follows that there is a unique Banach algebra product on 
the second dual of A** extending the product of A, namely the Arens product. 
Analogues of these facts remain true for operator Banach algebras: 

THEOREM 2.3. Let A be a unital operator algebra. 
(1) If A is a dual operator space then the product on A is necessarily separately 

weak* continuous. 
(2) There is a unique operator Banach algebra product on A** extending the 

product of A, namely the Arens product. 

Note that (1) follows from Proposition 2.2 and Theorem 2.1 (but was first 
proved in [3] using noncommutative M-ideal theory). Item (2) is immediate from 
(1), since if A is Arens regular then the Arens product is the unique separately weak* 
continuous product on A**; this was noticed during conversations with Christian 
Le Merdy. 

QuESTION 3. Does (1) of Theorem 2.3 remain true for nonunital operator 
algebras? 

By facts in [11] this is equivalent to asking if every 'quasimultiplier' of a dual 
operator space X is separately weak* continuous. This looks like it should be an 
easy question, however note that a counterexample to this question implies that 
not every one-sided multiplier (in our sense of [3, 6]) on X is weak* continuous, 
and would solve in the negative some other questions left open in [3]. 
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One may also ask if (1) of Theorem 2.3 remains true if one replaces 'dual 
operator space' by dual Banach space'. This is just Question 2 restricted to the 
class of operator algebras. 

QUESTION 4. Does (2) of Theorem 2.3 remain true without the matrix norms? 
That is, is the Arens product the only Banach algebra product on A** extending 
the product on an operator algebra A, with respect to which A** is isometrically 
isomorphic to an operator algebra? 

It would also be interesting to consider other Banach algebraic duality proper-
ties, such as those concerning topological centers (see e.g. [12]), in the category of 
operator algebras. 

Related to the above results is Sakai's important characterization of von Neu-
mann algebras. Sakai's theorem says that 'the von Neumann algebras are exactly 
the C*-algebras which possess a Banach space predual'. The word 'exactly' here 
means 'via a weak* homeomorphic *-isomorphism 1r'. When considering the non-
selfadjoint operator algebra situation, one sees that there could be several variants 
of such a theorem, corresponding to whether one wants to keep 'Banach space pre-
dual' or replace it with 'operator space predual'; and whether 1r should be a weak* 
homeomorphic isometric isomorphism, or a weak* homeomorphic completely iso-
metric one. 

THEOREM 2.4. (Le Merdy [13, 14]) Let A be a (possibly nonunital) operator 
algebra with an operator space predual. Then the product on A is separately weak* 
continuous if and only if A is completely isometrically isomorphic, via a weak* 
homeomorphic homomorphism, to a weak* closed subalgebra of B(H), for some 
Hilbert space H. 

We call an operator algebra satisfying the equivalent conditions in Le Merdy's 
theorem a dual operator algebra. Combining Theorem 2.3 (1) and Theorem 2.4 
gives: 

COROLLARY 2.5. A unital operator algebra with an operator space predual is a 
dual operator algebra. 

Thus Question 3 may be restated: Is Corollary 2.5 true for nonunital operator 
algebras? Question 2, in the particular case of operator algebras, reduces to: 

QUESTION 5. Is an operator algebra with a Banach space predual isometrically 
isomorphic, via a weak* continuous isomorphism, to a weak* closed subalgebra of 
B(H)? 

We were able to show in [3] that the answer to Question 5 is negative in general 
if 'isometrically' is replaced by 'completely isometrically'. 

Finally, we turn to the 'commutative case' of function algebras. As we said 
at the end of the introduction, every function algebra is an operator algebra. By 
[2, Corollary 2.8], it is easy to see that a function algebra with a predual Banach 
space has a predual operator space. Thus, by the observation before Question 1, 
and by Theorem 2.4, the answer to Question 5 is in the affirmative for all unital 
function algebras. That is, every unital function algebra A with a Banach space 
predual, is isometrically isomorphic, via a weak* homeomorphism, to a weak* closed 
subalgebra of B(H), for some Hilbert space H. That is, every such A is what is 
sometimes called a 'uniform dual algebra' in the function algebra literature (see e.g. 
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58 DAVID P. BLECHER 

[17]; we remark that the assertion in the last line answers a question posed in that 
paper). However the following question (dating at least as far back as [17]) is still 
open: 

QUESTION 6. Is every unital funcj;ion algebra possessing a Banach space predu-
al, isometrically isomorphic, via a weak* continuous isomorphism, to a weak* closed 
subalgebra of an L':xo-space (that is, of a commutative von Neumann algebra)? 

Acknowledgments. I am grateful to Volker Runde and Anthony Lau for the 
splendid conference that they organized, and for inviting me to be a participant; 
to the referee for his careful reading and suggestions; and to Christian Le Merdy, 
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Jordan Banach algebras in harmonic analysis 

Cho-Ho Chu 

ABSTRACT. We expose some useful connections between Jordan Banach alge-
bras and harmonic analysis on Riemannian symmetric spaces, and prove some 
new results in this context. 

1. Jordan Banach algebras 

The concept of a Jordan algebra was introduced by Jordan, von Neumann and 
Wigner in (14], with the aim to formulate an algebraic model for quantum mechan-
ics. They introduced the notion of an r-number system which is, in present day 
terminology, a finite-dimensional, formally real, Jordan algebra, and they classified 
these algebras completely. Actually, the term "Jordan algebra" first appeared in a 
paper by Albert (1]. It denotes an algebra of linear transformations closed in the 
product A o B = 1/2(AB + BA). The study of such an algebra was initiated by P. 
Jordan (13] earlier, in connection with quantum physics, which was seminal in the 
development of the theory of r-number systems. 

In what follows, we discuss Jordan algebras with geometric overtones and show 
in this section when a non-surjective linear isometry preserves Jordan structures. 
We explain in the next section the close connections between Jordan Banach al-
gebras and symmetric manifolds. In the last section, we show that the bounded 
harmonic functions on a Riemannian symmetric space form an associative Jordan 
algebra, and that amenability is necessary for the absence of a non-constant bound-
ed harmonic function on a Riemannian symmetric space. 

A Jordan algebra is a commutative, but not necessarily associative, algebra 
satisfying the Jordan identity 

We restrict our attention to only real or complex algebras. A real or complex 
Banach space A is called a Jordan Banach algebra if it is a Jordan algebra and the 
norm satisfies 

llabll :S llallllbll (a,b E A). 
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60 CHO-HO CHU 

Every Banach algebra A is a Jordan Banach algebra in the following Jordan prod-
uct: 

1 
a o b = 2(ab + ba) (a,bEA) 

where the product on the right is the original product. Therefore one can view Jor-
dan Banach algebras as a non-associative generalization of (commutative) Banach 
algebras. 

On a Jordan algebra A, one defines the Jordan triple product by 

{a, b, c} = (ab)c + (cb)a- (ac)b. 

Each x E A induces a quadratic operator Q(x) :A----t A, given by 

Q(x)(y) = {x,y,x}. 
We define the multiplication operator L(x) :A----t A by 

L(x)(y) = xy. 
Let A have an identity e. An element x E A is said to be invertible if there exists 
x- 1 E A such that xx- 1 = e and x2x- 1 = x. This is equivalent to saying that the 
map Q(x) is invertible with inverse Q(x)-1 = Q(x-1). 

A real Jordan algebra is called formally real if L:;j a] = 0 implies all ai = 0. A 
real Jordan Banach algebra A is called a JB-algebra if it satisfies 

lla2 ll = llall 2 

lla2 ll:::; lla2 + b2 ll 
for all a, b E A. The finite-dimensional unital formally real Jordan algebras are 
exactly the finite-dimensional JB-algebras [10]. The complex version of JB-algebras 
are the JB*-algebras. A complex Jordan Banach algebra A is called a JB*-algebra 
if it has an involution * such that, for all a E A, 

lla*ll = llall, 
lla(J) II = llall 3 

where we define a<3l = {a, a*, a} and include the involution in the Jordan triple 
product: {a,b*,c}. It has been shown in [22] that the JB*-algebras are precisely 
the complexifications of JB-algebras. Every C*-algebra A is a JB*-algebra in the 
Jordan product 

1 
a o b = 2 ( ab + ba) (a,bEA) 

and A is abelian if, and only if, (A, o) is an associative JB*-algebra. One can regard 
JB*-algebras as a non-associative generalization of C*-algebras and indeed, JB*-
algebras are also called Jordan C*-algebras. However, historically many important 
aspects of Jordan theory were developed in the study of symmetric manifolds in 
differential geometry as one will have a glimpse of this later. 

We note that the norm on a JB* -algebra is unique, in fact, a Jordan prod-
uct isomorphism between two JB*-algebras is necessarily isometric. Conversely, a 
surjective linear isometry 'P between two JB*-algebras preserves the Jordan triple 
product: 

cp{a,b*,c} = {cp(a),cp(b)*,cp(c)} 
and if the algebras as well as 'P are unital, then 'P preserves the Jordan product. 
This result is a special case of a well-known result of Kaup [16] for the larger class 
of JB*-triples, proved elegantly by complex geometric method (see also [5, 11]). It 

Licensed to Univ of Houston.  Prepared on Tue Nov 13 12:46:18 EST 2018for download from IP 129.7.158.43.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



JORDAN BANACH ALGEBRAS IN HARMONIC ANALYSIS 61 

subsumes Kadison's result [15] for surjective linear isometries of C*-algebras. The 
result is false if rp is not surjective. We now refine on Kaup's result to include the 
non-surjective case. The following two new results are actually valid for the larger 
class of JB*-triples although we suppress the discussion of JB*-triples in this paper. 

We first recall that a map h : D ---> U between open sets in complex Banach 
spaces Z and W, respectively, is called holomorphic if the Frechet derivative h'(a) : 
Z---> W exists for every a ED, where h'(a) is a complex linear map satisfying 

lim llh(a + t)- h(a)- h'(a)(t)ll = O. 
t-->0 lltll 

A holomorphic map h : D ---> U is called biholomorphic if it is bijective and the 
inverse h - 1 is also holomorphic. The open unit ball of a Banach space Z will be 
denoted by Z0 . Let Aut Z0 be the automorphism group of Zo, consisting of all 
biholomorphic maps from Z0 onto itself. For a JB*-algebra A, the basic elements 
in Aut Ao are the Mobius transformations. To describe them, we first define the 
following two fundamental linear operators on a JB*-algebra A. For x, yEA, the 
box operator xOy : A ---> A and the Bergman operator B(x, y) : A ---> A are 
defined by 

(xOy)(z) = {x,y*,z}, 
B(x,y)(z) = z-2{x,y*,z}+{x,{y,z*,y}*,x}. 

Given a E Ao, we define the Mobius transformation of Ao, induced by a, to be the 
biholomorphic map ha : Ao ---> Ao given by 

ha(z) =a+ B(a, a) 112 (I + z0a)- 1 (z) (z E A) 
where I is the identity operator. We have ha(O) =a, ha( -a) = 0 and h-;; 1 = h-a· 
We also have the Frechet derivatives h~(O) = B(a, a) 112 and h'_a(a) = B(a, a)-112 

(cf. [16]). 
If A is a C* -algebra, we have the following formula for the Mobius transforma-

tion, due to Potapov [19] and Harris [11]: 
ha(z) = (1- aa*)- 112 (a + z)(1 + a*z)- 1(1- a*a) 112 

which reduces to the familiar Mobius transformation on the complex open unit disc 
if A= C. 

LEMMA 1.1. Let rp : A ---> B be a linear isometry, not necessarily surjective, 
between JB*-algebras A and B. Let a E Ao and let f E Aut rp(A)o be such that 
f(rp(a)) = 0. Then 

f(O) =- f'(rp(a))(rp(B(a, a) 112 (a))). 

PROOF. Let h = frpha : Ao ---> rp(A)o. Then his biholomorphic and h(O) = 0. 
Hence his linear by Cartan's uniqueness theorem [20, p. 215] and on A 0 , we have 
h = h'(O) = (frpha)'(O) = (frp)'(ha(O))h~(O) = (frp)'(a)B(a,a) 112 . Evaluating hat 
-a, we get the formula. 0 

We note that rph-arp- 1 is an automorphism of rp(A)o and maps rp(a) to 0. For 
a C*-algebra, we have B(a, a) 112 (a) = (1- aa*) 112a(1- a*a) 112 = a- aa*a since 
(1- aa*) 112a = a(1- a*a) 112 . Therefore we have B(a, a) 112 (a) =a- {a, a*, a} for 
a JB*-algebra, by considering the JB*-subalgebra generated by a and a* which is 
a Jordan subalgebra of a C*-algebra by the Shirshov-Cohn theorem [10, 2.4.14]. 
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Since B(a, a) = B( -a, -a), we have h_a( -z) = -ha(z). It follows that, if D = -D 
is a subset of the open unit ball of a JB*-algebra, invariant under ha, then it is also 
invariant under h_a and ha(D) =D. 

The following refinement of Kaup's result in [16, Proposition 5.5] generalizes 
as well as giving a geometric proof of Kadison's result for C*-algebras [15]. 

THEOREM 1.2. Let cp : A -----. l3 be a linear isometry, not necessarily surjective, 
between JB*-algebras A and !3. Let a E Ao and let h<p(a) : l3o -----. l3o be the Mobius 
transformation induced by cp(a). If h<p(a)(cp(A)o) C cp(A)o, then we have 

cp{a, a*, a}= {cp(a), cp(a)*, cp(a)}. 
In particular, if cp is surjective, then cp is a Jordan triple isomorphism. 

PROOF. Let f be the restriction to of the Mobius transformation h-<p(a) E 
Aut l3o to cp(A)o. Then f E Aut cp(A)o, f(cp(a)) = 0 and the derivative f'(cp(a)): 
cp(A)-----> cp(A) is the restriction of the derivative h'_<p(a)(cp(a)): l3-----> l3 which is 
equal to B(cp(a),cp(a))- 112 . By Lemma 1.1, we have 

-cp(a) = f(O) =- f'(cp(a))(cp(B(a, a) 112 (a)) = -B(cp(a), cp(a))- 112cp(a- a(3l). 

It follows that cp(a) -cp(a)(3) = B(cp(a), cp(a)) 112 (cp(a)) = cp(a) -cp(a(3)) which gives 
cp(a)(3) = cp(a(3l). 

Finally, if cp is surjective, then cp(A)o = !30 and cp preserves the triple product 
by the polarization identity 

{a,b*,c} = 1 8 I: a,8{(a+ab+,8c),(a+ab+,8c)*,(a+ab+,8c)}. 
a4=/J2=1 

0 

2. Riemannian symmetric spaces 

A Riemannian symmetric space X is a connected Riemannian manifold in which 
every point is an isolated fixed-point of an involutive isometry of X. The Euclidean 
space JRd is such a space with the involutive isometry 'Pp at each point p E JRd given 
by 'Pp ( x) = 2p - x. A Riemannian symmetric space can be represented as the coset 
space G / H of a Lie group G by a maximal compact subgroup H. An important 
class of examples are the symmetric cones about which full details of what follows 
can be found in [6]. A classic reference for Riemannian symmetric spaces is [12]. 

Let V be a finite-dimensional real inner product space with inner product (·, ·). 
An open cone 0 c V is called symmetric if it satisfies 

(i) (self-duality) 0 = { v E V : (v, x) > 0 Vx E 0\ {0}}; 
(ii) (homogeneity) given x, y E 0, there is a linear isomorphism h : V -----> V 

such that h(O) =nand h(x) = y. 

EXAMPLE 2.1. For n > 2, the Lorentz cone An C IRn, defined below, is sym-
metric. 

An= {(x1, ... ,xn) E !Rn: X1 > 0 and xi -x~- ... -x~ > 0}. 

EXAMPLE 2.2. Let V be the linear space of all real symmetric m x m matrices, 
equipped with the inner product 

(A, B) =trace (AB). 
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The cone f2 consisting of positive definite symmetric m x m real matrices is sym-
metric in V. 

EXAMPLE 2.3. Let A be a finite-dimensional unital formally real Jordan al-
gebra. The interior f2 of the cone { a2 : a E A} is a symmetric cone with respect 
to the inner product (x,y) = traceL(xy). The elements in f2 are invertible and 
Q(b)Q(a- 1 ) is a linear automorphism of A, sending f2 to itself, and a2 to b2 . 

Every symmetric cone f2 can be decomposed as a sum of irreducible ones: 

n = n1 + ... +flk 
where each fli is a symmetric cone in a subspace Vi of V and cannot be decomposed 
further into a sum of symmetric cones. 

A symmetric cone f2 in V can be given a Riemannian metric g which makes 
it into a Riemannian symmetric space. To do this, we define the characteristic 
function <p : f2 ____, IR by 

<p(x) = k exp(-(x,y))dy 

where dy denotes the Euclidean measure on V. For each v E V, we have the 
directional derivative 

Dvlog<p(x)= ddl log<p(x+tv). 
t t=O 

One can define a Riemannian metric g on f2 by 

(2.1) (x E fl,u,v E V). 
In fact, this metric can be constructed equivalently via a Jordan algebra thereby 
algebraic methods can be applied to analysis on symmetric cones. 

We now describe the seminal result of Koecher [17] and Vinberg [21] which 
links Jordan algebras to geometry and analysis. 

THEOREM 2.4 (Koecher and Vinberg). Let n be a symmetric cone in a real 
inner product space V. Then V can be equipped with a formally real Jordan product 
and an identity e such that n is the interior of its closure which is given by 

0 = {x2 : x E V}. 
Further, f2 is the connected component of e in the space of invertible elements in 
v. 

Using solely the above Jordan structure of V, one can define the following 
equivalent Riemannian metric on fl: 

'Yx(u,v) = traceL({x- 1,u,x- 1}v) (x E fl, u,v E V). 
If f2 is irreducible, then the Riemannian metric gin (2.1) is a scalar multiple of 'Y· 

Let { ei} be an orthonormal basis of V with respect to the inner product ( u, v) = 
trace L( uv) and let 

/'ij(x) = 'Yx(ei, ej)· 
Denote the inverse of the matrix ')' = ( /'ij) by ( ')'ij). The Laplace-Beltrami operator 
on n now has the form 

1 2:8(~··0) .6. = --- -- ydet')'')'21 -
Jdet')' .. axi OXj 

2,] 
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which will be discussed in a wider context in the next section. 
We have seen that the symmetric cones are exactly the interiors of the cones 

of finite-dimensional JB-algebras. The important connection of JB*-algebras with 
geometry can be seen from the following result of Braun, Kaup and Upmeier [2]. 

THEOREM 2.5. A bounded domain in a complex Banach space is a symmetric 
tube domain if, and only if, it is biholomorphic to the open unit ball of a unital 
JB*-algebra. 

A bounded domain in a complex Banach space is called a symmetric tube do-
main if it is biholomorphic to a domain of the form 

V +in := {a+ ib: a E V, bE n} 

which is contained in the complexification V + iV of a real Banach space V, where 
n is an open cone in V and every point in V +in is an isolated fixed-point of a 
holomorphic involution s : v +in ---> v +in. If v = JR. and n = (0, 00 ), then 
V +in = JR.+ i(O, oo) is just the upper half plane in C. Therefore one can view, 
from the above theorem, the open unit balls of JB* -algebras as generalizations of 
the upper half complex plane. 

3. Harmonic functions 

In this section, we show that the bounded harmonic functions on a Riemannian 
symmetric space form an associative JB-algebra. We also give a necessary condition 
for a Liouville theorem for these spaces. We first note that a Riemannian symmetric 
space n is a complete manifold and if n has non-negative sectional curvature, 
then the bounded harmonic functions on n are constant. Indeed, Yau [23] has 
shown that on a complete Riemannian manifold of non-negative Ricci curvature, 
every bounded harmonic function is constant. Therefore we need only consider 
Riemannian symmetric spaces with negative sectional curvature. Let X be such 
a manifold throughout this section. The identity component G of the isometry 
group of X is a semisimple Lie group acting transitively on X which can then be 
represented naturally as a left coset space G / H, where H is the isotropy group 
at any point of X and is a maximal compact subgroup of G [12]. Let A be the 
Laplace-Beltrami operator on X. This operator is defined for symmetric cones in 
the previous section. Following [8, Definition 5], we define a Laplace operator£ on 
X to be any elliptic second-order differential operator (left) invariant under G and 
annihilating constants. A real function f E C 00 (X) is harmonic if D.f = 0, and is 
called strongly harmonic if £f = 0 for any Laplace operator£ on X. 

Let 0' be a probability measure on G. A Borel function f : X ---> JR. is called 
0'-harmonic if the inverted function J(gH) := f(g- 1 H) satisfies the convolution 
equation 

(x E X) 

where x E X~ g.x E X (g E G) is the natural action of G on X = GjH. A 
measure 0' on G is called H-invariant if dO'(hg) = dO'(gh) = dO'(g) for any h E H. 
We note that, if 0' is absolutely continuous, then the bounded 0'-harmonic functions 
are continuous. The following well-known result is due to Furstenberg [8]. 
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THEOREM 3.1. Let X = G I H be the above manifold. Then there is an H-
invariant absolutely continuous probability measure a on G such that the following 
conditions are equivalent for a bounded function function f on X: 

(i) f is harmonic; 
(ii) f is strongly harmonic; 

(iii) f is a-harmonic. 

Although the pointwise product of two harmonic functions need not be har-
monic, we show that the space H(X) of bounded harmonic functions on X forms 
an associative JB-algebra in certain product, using the following device. 

LEMMA 3.2. Let L00 (X) be the real Banach algebra of essentially bounded func-
tions on X, with respect to a (left) G-invariant Radon measure on X. Let a be a 
probability measure on G. Then there is a contractive projection P : L 00 (X) ----+ 
L00 (X) whose range is 

Hu(X) := {! E L00 (X): f =a*!}. 

PROOF. The construction is similar to that in [4, Proposition 2.2.5]. Define a 
weak* continuous linear map A: L00 (X) ----+ L00 (X) by 

A(f) =a* f. 
Then A is a contraction since a is a probability measure. Let L00 (X)L=(x) be 
equipped with the product weak* topology T and let K be the T-closed convex 
hull of {An : n = 1, 2, ... } in this space, where An= A o · · · o A (n-times). Define 
an affine T-continuous map <fl: K----+ K by 

<fl(r)(f) =a* r(f) (r E K, f E L00 (X)). 

By the Markov-Kakutani fixed-point theorem, there exists P E K such that <fl(P) = 
P and Pis the required contractive projection. D 

PROPOSITION 3.3. Let n be a Riemannian symmetric space. Then the space 
H(D) of bounded harmonic functions on n is linearly isometric to a real abelian 
C*-algebra. 

PROOF. We need only consider the case n =X= GIH as above. Let a be 
the H-invariant absolutely continuous probability measure in Theorem 3.1. By 
the above lemma, Ha(X) is the range of a contraction projection on L00 (X). Since 
Ha(X) contains constant functions, a result in [18, p.343] implies that it is isometric 
to the space of real continuous functions on a compact Hausdorff space (see also 
[7]). Hence the result follows as the map f E H(X) f-+ J E Hu(X) is a linear 
isometry. D 

We conclude with the following necessary condition for the Liouville Theorem. 
A left coset space X= GIH is called G-amenable (or simply, amenable) if G acts 
amenably on X in the sense of [9], that is, if there is a left-invariant mean on 
Loo(X). 

THEOREM 3.4. Let X = G I H be a Riemannian symmetric space with negative 
sectional curvature. If every bounded harmonic function on X is constant, then X 
is amenable. 
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PROOF. Since X has negative sectional curvature, we can apply Furstenberg's 
result in Theorem 3.1. Let u be the H-invariant absolutely continuous probability 
measure in Theorem 3.1 such that H(X) = {f E L00 (X) : J = u * f}. By 
assumption, H(X) consists of constant functions. Let Ha(G) be the space of all 
bounded Borel functions F : G ---+ IR satisfying the convolution equation 

F(g) = u * F(g) := i F(y- 1g)du(y) (g E G). 

We show that Ha(G) consists of only constant functions. Let F E Ha(G) and 
define a function f : X ---+ IR by 

f(gH) = JH F(gh)dh 

where dh is the normalized Haar measure on the compact group H. Then f is 
harmonic on X since 

(u * f)(gH) i f(y- 1gH)du(y) 

i i F(y- 1gh)du(y)dh 

i F(gh)dh = f(gH). 

Hence J E H(X) and is constant. So f is constant which gives 

(3.1) i F(ah)dh = i F(bh)dh (a,bEG). 

Using (3.1) and the H-invariance of u, we have 

F(e) i F(y- 1 )du(y) = i i F(y- 1 )dhdu(y) 

i i F(y- 1h)dhdu(y) = i i F(bh)dhdu(y) 

i F(bh)dh 

for all bE G. Apply the above to the right translation F(·a) E Ha(G), we obtain 

F(a) = i F(bha)dh (a, bE G). 

It follows that 

(3.2) F(a) = i F(ahb)dh (a, bE G) 

where F(g) = F(g- 1 ). The H-invariance of u also implies that, for all hE Hand 
a E G, 

F(ha) i F(y- 1ha)du(y) 

i F(y- 1a)du(y) = F(a). 
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Therefore we can define a function 'P : X -----+ ffi. by 

'P(aH) = F(a). 

67 

By (3.2) and [8, Theorem 5], the function 'Pis harmonic. Hence 'Pis constant, that 
is, F is constant. So H a (G) contains only constant functions and by [ 4, Corollary 
2.2.8], G is amenable, and so is GIH. 0 

It follows from the above result that there are non-constant bounded har-
monic functions on the non-amenable symmetric spaces SL(n, IR)I SO(n), where 
SL(2, IR) I S0(2) is the upper half plane. 

Without differential structures, one can consider a-harmonic functions on coset 
spaces G I H of locally compact groups G where H need not be compact and a need 
not be H-invariant. It would be of interest to extend Theorem 3.4 to this setting. 
We note that amenability of G I H does not imply that of G, unless H is compact 
[9, Theorem 3.1]. 

Matrix-valued a-harmonic functions on locally compact groups have been s-
tudied in [3]. As an analogue of a-harmonic functions, the concept of a harmonic 
functional on the Fourier algebra A( G) of a locally compact group G has been 
introduced in [4] and it has been shown that these harmonic functionals form a 
JB*-algebra [4, Proposition 3.3.5]. 
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