Math 1432 Quiz 3 Version B

PS ID:

1. (2 pts) Let R be a region totally contained in the first quadrant with area 1/2 and centroid C(14,10). If this region is rotated about the line y = -1, find the volume of the solid formed.

$$V = 2\pi RA$$
 $A = 1/2$ $R = 10 - (-D = 11)$
= $2\pi C_{11} C_{12} C_{13} C_{14} C_{15} C_{15} C_{15}$

2. (2 pts) Let R be the region bounded by $f(x) = e^{3x}$ and the x-axis, $0 \le x \le 2$. If R is the base of a solid whose cross sections perpendicular to the x-axis are squares, find the volume of this solid.

3. (1 pt) Let R be the region bounded by $x^2 + y^2 = 25$. If R is the base of a solid whose cross sections perpendicular to the y-axis are squares, **set up** an integral that gives the volume of this solid.

4. (3pts) Find the particular solution: $y' = 24yx^3$, y(0) = 3. (Suppose y>0)

$$\frac{dy}{dx} = 24yx^{3}$$
 $3 = (e^{0} \Rightarrow) C = 3$
 $\frac{dy}{dx} = 24x^{3}$
 y
 $\frac{dy}{dx} = 24x^{3}$
 y
 $\frac{dy}{dx} = 24x^{3}$
 y
 $\frac{dy}{dx} = 24x^{3}$
 y
 $y = 6x^{4} + C$
 $y = e^{6x^{4}} + C$
 $y = e^{6x^{4}} + C$

5. (2pts) A bacteria population that grows exponentially doubles every 10 hours. If the initial population is 4,000 bacteria, find the population after 2 hours.

$$9 = 70e^{8t}$$
 $276 = 70e^{108}$
 $1 \ln(2) = 108$
 $7 = 1 \ln(2)$
 $1 \ln(2) = 108$
 $1 \ln(2) = 10$