

Are Loss Functions All the Same?

NOV. 11, 2003. L. ROSASCO, E. DE VITO, A. CAPONNETTO, M. PIANA

{PRESENTED BY AHMED ABOUSERIE AND MEGAN STICKLER}

Machine Learning Process

Machine Learning Process

Theoretically, our expected risk is

$$R[f] = \int_{X \times Y} L(f(x), y) p(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Where L(f(x), y) is the loss function and p(x, y) is the probability distribution on $X \times Y$ and our solution is the function $f_0: X \to \mathbb{R}$ that minimizes this.

In practice, p(x, y) is not minutely known and so instead we use our data, which consists of N samples drawn from p(x, y) and find the empirical risk

$$R_{emp}[f] = \frac{1}{l} \sum_{i=1}^{l} L(f(x_i), y_i)$$

And its minimizing argument f_D .

Theoretically, our expected risk is

$$R[f] = \int_{X \times Y} L(f(x), y) p(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Where L(f(x), y) is the loss function and p(x, y) is the probability distribution on $X \times Y$ and our solution is the function $f_0: X \to \mathbb{R}$ that minimizes this.

In practice, p(x, y) is not minutely known and so instead we use our data, which consists of N samples drawn from p(x, y) and find the empirical risk

$$R_{emp}[f] = \frac{1}{l} \sum_{i=1}^{l} L(f(x_i), y_i)$$

And its minimizing argument f_D .

Error Source!!
$$R \neq R_{emp} \Rightarrow f_0 \neq f_D$$

Additionally, attempting to approximate f_0 from a finite data set is an ill-posed problem, so we regularize the problem by imposing smoothness constraints on the set from which f_0 is drawn. That is, we use an RKHS *H*. We further restrict this space by using a threshold C > 0:

 $H_C = \{ f \in H : ||f||_H \le C \}$

Hence, the minimizer we're actually finding is f_c , which minimizes over H_c , not f_0 , which minimizes over the space of measureable functions F for which R[f] is well-defined.

Additionally, attempting to approximate f_0 from a finite data set is an ill-posed problem, so we regularize the problem by imposing smoothness constraints on the set from which f_0 is drawn. That is, we use an RKHS *H*. We further restrict this space by using a threshold C > 0:

 $H_C = \{ f \in H : ||f||_H \le C \}$

Hence, the minimizer we're actually finding is f_c , which minimizes over H_c , not f_0 , which minimizes over the space of measureable functions F for which R[f] is well-defined.

Error Source!!
$$F \neq H_C \Rightarrow f_0 \neq f_C$$

$R[f_D] - R[f_0] = (R[f_D] - R[f_C]) + (R[f_C] - R[f_0])$

$R[f_D] - R[f_0] = (R[f_D] - R[f_C]) + (R[f_C] - R[f_0])$

The second part, $(R[f_C] - R[f_0])$, is called the «approximation error» and can be minimized by choosing a sufficiently rich hypothesis space H_C .

$R[f_D] - R[f_0] = (R[f_D] - R[f_C]) + (R[f_C] - R[f_0])$

The second part, $(R[f_C] - R[f_0])$, is called the «approximation error» and can be minimized by choosing a sufficiently rich hypothesis space H_C .

The first part, $(R[f_D] - R[f_C])$, is called the «sample» or «estimation error».

$R[f_D] - R[f_0] = (R[f_D] - R[f_C]) + (R[f_C] - R[f_0])$

The second part, $(R[f_C] - R[f_0])$, is called the «approximation error» and can be minimized by choosing a sufficiently rich hypothesis space H_C .

The first part, $(R[f_D] - R[f_C])$, is called the «sample» or «estimation error».

Question: What effect does the choice of loss function have on the sample error?

Loss Functions

Part of what this paper does is explicitly require loss functions to be convex. As a result, it is able to use the convexity and its results, Lipschitz continuity and boundedness at 0, in its analysis.

 L_M : Lipschitz constant for M > 0

 C_0 : bound at 0

 $L(0, y) \le C_0$

Loss Functions

It then compares loss functions for regression problems and loss functions for classification problems:

Regression Losses

Square Loss: $L(x, y) = (x - y)^2$

Abs. Value Loss: L(x, y) = |x - y|

 ε -insensitive Loss: $L(x, y) = \max\{|x - y| - \varepsilon, 0\}$

Classification Losses

Square Loss: $L(x, y) = (x - y)^2 = (1 - xy)^2$ Hinge Loss: $L(x, y) = \max\{1 - xy, 0\}$ Logistic Loss: $L(x, y) = (\ln 2)^{-1} \ln(1 + e^{-xy})$

L_M : Lipschitz constant

 C_0 : bound at 0.

For regression problems on interval $[a, b] \subset \mathbb{R}$,

 $\delta = \max\{|a|, |b|\}$

problem	loss	L_M	C_0
regr	quad	$2M + \delta$	δ^2
regr	abs val	1	δ
regr	ϵ -insensitive	1	δ
class	quad	2M + 2	1
class	hinge	1	1
class	logistic	$(\ln 2)^{-1}e^M/(1+e^M)$	1

Bound on Sample Error

One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to provide a bound on the estimation error .

Lemma: Let $M = ||f||_{\infty} C$ and $B = L_M M + C_0$. For all $\varepsilon > 0$,

$$P\left\{D \in (X \times Y)^{l}: \sup_{f \in Hc} \left| R[f] - R_{em_{P}}[f] \right| \le \varepsilon\right\} \ge 1 - 2N\left(\frac{\varepsilon}{4L_{M}}\right) e^{\left(-\frac{l\varepsilon^{2}}{8B^{2}}\right)}$$

Bound on Sample Error

One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to provide a bound on the estimation error .

Theorem: Given $0 < \eta < 1, l \in \mathbb{N}, C > 0$, then with probability at least $1 - \eta$

$$\begin{split} R[f_D] &\leq R_{em_P}[f_D] + \varepsilon(\eta, l, C) \\ \text{And } |R[f_D] - R[f_C]| &\leq 2\varepsilon(\eta, l, C) \\ \text{With } \lim_{l \to \infty} \varepsilon(\eta, l, C) = 0. \end{split}$$

Bounds on Sample Error

Using this and the table results, they get the following convergence rates:

Regression

Square: $2N\left(\frac{\varepsilon}{4(2C+\delta)}\right)\exp\left(-\frac{l\varepsilon^2}{8(C(x+\delta)+\delta^2)^2}\right)$

Abs. Value and ε -insensitive: $2N\left(\frac{\varepsilon}{4}\right)\exp\left(-\frac{l\varepsilon^2}{8(C+\delta)^2}\right)$

problem	loss	L_M	C_0
regr	quad	$2M + \delta$	δ^2
regr	abs val	1	δ
regr	ϵ -insensitive	1	δ
class	quad	2M + 2	1
class	hinge	1	1
class	logistic	$(\ln 2)^{-1}e^M/(1+e^M)$	1

Bounds on Sample Error

Using this and the table results, they get the following convergence rates:

Classification:

Square:
$$2N\left(\frac{\varepsilon}{4(2C+\delta)}\right)\exp\left(-\frac{l\varepsilon^2}{8(C(x+\delta)+\delta^2)^2}\right)$$

Hinge: $2N\left(\frac{\varepsilon}{4}\right)\exp\left(\frac{-l\varepsilon^2}{8(C+1)^2}\right)$
Logistic: $2N\left(\frac{\varepsilon}{4}\right)\left(\frac{\ln 2(1+e^C)}{e^C}\right)\exp\left(-\frac{l\varepsilon^2}{8(C((\ln 2)^{-1}e^C/(e^C+1))+1)^2}\right)$

-	problem	loss	L_M	C_0
-	regr	quad	$2M + \delta$	δ^2
	regr	abs val	1	δ
_	regr	ϵ -insensitive	1	δ
-	class	quad	2M + 2	1
	class	hinge	1	1
-	class	logistic	$(\ln 2)^{-1}e^M/(1+e^M)$	1

Bounds on Sample Error

Regression Losses

Classification Losses

Further Bounds on Sample Error for Classification Problems

They show also that the Bayes Optimal solution f_b is equivalent to the sign of f_0 (sgn (f_0)):

Assume that the loss function L(x, y) = L(xy) is convex and that it is decreasing in a neighborhood of 0. If $f_0(x) \neq 0$, then

$$\operatorname{sgn}(f_0) = f_b = \begin{cases} 1 & \text{if } p(1|\mathbf{x}) > p(-1|\mathbf{x}) \\ -1 & \text{if } p(1|\mathbf{x}) < p(-1|\mathbf{x}). \end{cases}$$

Bounds on Estimation Error for Classification Problems

In terms of minimizing total error, for classification problems we would like to bound $R[sgn(f_D)] - R[f_b]$

A result from (Lin et al., 2003) shows that specifically for hinge loss, $R[f_0] = R[f_b]$.

They combine this with the previously derived bounds to show that in the case of hinge loss,

for $0 < \eta < 1$, C > 0, with probability at least $1 - \eta$

 $0 \le R[\operatorname{sgn}(f_D)] - R[f_b] \le R[f_D] - R[f_0] \le 2\varepsilon(\eta, l, C)$