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Loss functions and Risk
Theoretically, our expected risk is 

𝑅𝑅 𝑓𝑓 = �
𝑋𝑋×𝑌𝑌

𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦 𝑝𝑝 𝑥𝑥,𝑦𝑦 d𝑥𝑥 d𝑦𝑦

Where 𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦 is the loss function and 𝑝𝑝 𝑥𝑥,𝑦𝑦 is the probability distribution on 𝑋𝑋 × 𝑌𝑌 and our solution is 
the function 𝑓𝑓0:𝑋𝑋 → ℝ that minimizes this.

In practice, 𝑝𝑝 𝑥𝑥, 𝑦𝑦 is not minutely known and so instead we use our data, which consists of 𝑁𝑁 samples 
drawn from 𝑝𝑝 𝑥𝑥, 𝑦𝑦 and find the empirical risk 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 =
1
𝑙𝑙
�

𝑖𝑖=1

𝑙𝑙
𝐿𝐿 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

And its minimizing argument 𝑓𝑓𝐷𝐷. 
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Error Source!! 𝑅𝑅 ≠ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 ⇒ 𝑓𝑓0 ≠ 𝑓𝑓𝐷𝐷



Loss functions and Risk
Additionally, attempting to approximate 𝑓𝑓0 from a finite data set is an ill-posed problem, so we 
regularize the problem by imposing smoothness constraints on the set from which 𝑓𝑓0 is drawn. 
That is, we use an RKHS 𝐻𝐻. We further restrict this space by using a threshold 𝐶𝐶 > 0:

𝐻𝐻𝐶𝐶 = 𝑓𝑓 ∈ 𝐻𝐻: 𝑓𝑓 𝐻𝐻 ≤ 𝐶𝐶

Hence, the minimizer we’re actually finding is 𝑓𝑓𝑐𝑐 , which minimizes over 𝐻𝐻𝐶𝐶 , not 𝑓𝑓0, which 
minimizes over the space of measureable functions 𝐹𝐹 for which 𝑅𝑅 𝑓𝑓 is well-defined. 
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Error!
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The second part, 𝑅𝑅 𝑓𝑓𝐶𝐶 − 𝑅𝑅 𝑓𝑓0 , is called the «approximation error» and can be minimized by 
choosing a sufficiently rich hypothesis space 𝐻𝐻𝐶𝐶 .
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The first part, 𝑅𝑅 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓𝐶𝐶 , is called the «sample» or «estimation error». 
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The second part, 𝑅𝑅 𝑓𝑓𝐶𝐶 − 𝑅𝑅 𝑓𝑓0 , is called the «approximation error» and can be minimized by choosing a 
sufficiently rich hypothesis space 𝐻𝐻𝐶𝐶 .

The first part, 𝑅𝑅 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓𝐶𝐶 , is called the «sample» or «estimation error». 

Question: What effect does the choice of loss function have on the sample error? 



Loss Functions
Part of what this paper does is explicitly require loss functions to be convex. As a result, it is able 
to use the convexity and its results, Lipschitz continuity and boundedness at 0, in its analysis.

𝐿𝐿𝑀𝑀: Lipschitz constant for 𝑀𝑀 > 0

𝐶𝐶0: bound at 0

𝐿𝐿 0,𝑦𝑦 ≤ 𝐶𝐶0



Loss Functions
It then compares loss functions for regression problems and loss functions for classification problems:

Regression Losses Classification Losses

Square Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 2 Square Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 2 = 1 − 𝑥𝑥𝑦𝑦 2

Abs. Value Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 Hinge Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = max 1 − 𝑥𝑥𝑦𝑦, 0

ε-insensitive Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = max 𝑥𝑥 − 𝑦𝑦 − 𝜀𝜀, 0 Logistic Loss: 𝐿𝐿 𝑥𝑥,𝑦𝑦 = ln 2 −1 ln 1 + 𝑒𝑒−𝑥𝑥𝑥𝑥



𝐿𝐿𝑀𝑀 : Lipschitz constant

𝐶𝐶0:  bound at 0. 

For regression problems 
on interval 𝑎𝑎, 𝑏𝑏 ⊂ ℝ,

𝛿𝛿 = max 𝑎𝑎 , 𝑏𝑏



Bound on Sample Error
One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to 
provide a bound on the estimation error .

Lemma: Let 𝑀𝑀 = 𝑓𝑓 ∞𝐶𝐶 and 𝐵𝐵 = 𝐿𝐿𝑀𝑀𝑀𝑀 + 𝐶𝐶0. For all 𝜀𝜀 > 0,

𝑃𝑃 𝐷𝐷 ∈ 𝑋𝑋 × 𝑌𝑌 𝑙𝑙: sup
𝑓𝑓∈𝐻𝐻𝑐𝑐

𝑅𝑅 𝑓𝑓 − 𝑅𝑅𝑒𝑒𝑒𝑒𝑃𝑃 𝑓𝑓 ≤ 𝜀𝜀 ≥ 1 − 2𝑁𝑁 𝜀𝜀
4𝐿𝐿𝑀𝑀

e − 𝑙𝑙𝜀𝜀2

8𝐵𝐵2



Bound on Sample Error
One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to 
provide a bound on the estimation error .

Theorem: Given 0 < 𝜂𝜂 < 1, 𝑙𝑙 ∈ ℕ,𝐶𝐶 > 0, then with probability at least 1 − 𝜂𝜂

𝑅𝑅 𝑓𝑓𝐷𝐷 ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑃𝑃 𝑓𝑓𝐷𝐷 + 𝜀𝜀 𝜂𝜂, 𝑙𝑙,𝐶𝐶

And 𝑅𝑅 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓𝐶𝐶 ≤ 2𝜀𝜀 𝜂𝜂, 𝑙𝑙,𝐶𝐶

With lim
𝑙𝑙→∞

𝜀𝜀 𝜂𝜂, 𝑙𝑙,𝐶𝐶 = 0.



Bounds on Sample Error
Using this and the table results, they get the following convergence rates:

Regression

Square: 2𝑁𝑁 𝜀𝜀
4 2𝐶𝐶+𝛿𝛿

exp − 𝑙𝑙𝜀𝜀2

8 𝐶𝐶 𝑥𝑥+𝛿𝛿 +𝛿𝛿2 2

Abs. Value and ε-insensitive: 2𝑁𝑁 𝜀𝜀
4

exp − 𝑙𝑙𝜀𝜀2

8 𝐶𝐶+𝛿𝛿 2



Bounds on Sample Error
Using this and the table results, they get the following convergence rates:

Classification:

Square: 2𝑁𝑁 𝜀𝜀
4 2𝐶𝐶+𝛿𝛿

exp − 𝑙𝑙𝜀𝜀2

8 𝐶𝐶 𝑥𝑥+𝛿𝛿 +𝛿𝛿2 2

Hinge: 2𝑁𝑁 𝜀𝜀
4

exp −𝑙𝑙𝜀𝜀2

8 𝐶𝐶+1 2

Logistic: 2𝑁𝑁 𝜀𝜀
4

ln 2 1+e𝑐𝑐

e𝑐𝑐
exp − 𝑙𝑙𝜀𝜀2

8 𝐶𝐶 ln 2 −1 ⁄e𝑐𝑐 e𝐶𝐶+1 +1
2



Bounds on Sample Error

Regression Losses Classification Losses



Further Bounds on Sample Error 
for Classification Problems
They show also that the Bayes Optimal solution 𝑓𝑓𝑏𝑏 is equivalent to the sign of 𝑓𝑓0 (sgn 𝑓𝑓0 ):

Assume that the loss function 𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝐿𝐿 𝑥𝑥𝑦𝑦 is convex and that it is decreasing in a 
neighborhood of 0. If 𝑓𝑓0 𝑥𝑥 ≠ 0, then

sgn 𝑓𝑓0 = 𝑓𝑓𝑏𝑏



Bounds on Estimation Error for 
Classification Problems
In terms of minimizing total error, for classification problems we would like to bound 

𝑅𝑅 sgn 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓𝑏𝑏

A result from (Lin et al., 2003) shows that specifically for hinge loss, 𝑅𝑅 𝑓𝑓0 = 𝑅𝑅 𝑓𝑓𝑏𝑏 .

They combine this with the previously derived bounds to show that in the case of hinge loss, 

for 0 < 𝜂𝜂 < 1, 𝐶𝐶 > 0, with probability at least 1 − 𝜂𝜂

0 ≤ 𝑅𝑅 sgn 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓𝑏𝑏 ≤ 𝑅𝑅 𝑓𝑓𝐷𝐷 − 𝑅𝑅 𝑓𝑓0 ≤ 2𝜀𝜀 𝜂𝜂, 𝑙𝑙,𝐶𝐶
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