Title: The Nav1.2 channel is regulated by GSK3

Thomas F. James^{1,2}, Miroslav N. Nenov¹, Norelle C. Wildburger^{1,2}, Cheryl Lichti¹, Jonathan Luisi¹, Fernanda Vergara¹, Neli I. Panova-Electronova¹, Carol L. Nilsson¹, Jai Rudra¹, Thomas A. Green^{1,3}, Demetrio Labate⁶ and Fernanda Laezza^{1,3,4,5*}

From the Department of Pharmacology & Toxicology¹, Neuroscience Graduate Program², Center for Addiction Research³, Center for Biomedical Engineering⁴, Mitchell Center for Neurodegenerative Diseases⁵, The University of Texas Medical Branch, Galveston, Department of Mathematics University of Houston⁶

*To whom correspondence should be addressed: Fernanda Laezza, Department of Pharmacology & Toxicology, Center for Addiction Research, Center for Biomedical Engineering and Mitchell Center for Neurodegenerative Diseases, 301 University Boulevard, Galveston, TX, 77555, USA, Tel: (409)-772-9672; Fax: (409)-772-9642; E-mail: felaezza@utmb.edu

Abstract

Background: Phosphorylation plays an essential role in regulating the voltage-gated sodium (Na_v) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na_v channels. Herein, we posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na_v channels.

Methods: We used patch-clamp electrophysiology to record sodium currents from Na_v1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and *in vitro* phosphorylation and mass spectrometry to identify phosphorylated residues.

Results: We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Na_v1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Na_v1.2-encoded currents. Neither mRNA nor total protein expression were changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Na_v1.2 channel indicates that cell surface expression of CD4-Nav1.2-Ctail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using *in vitro* phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T¹⁹⁶⁶ at the C-terminal tail of Na_v1.2.

Conclusion: These findings provide evidence for a new mechanism by which GSK3 modulate Na_v channel function via its C-terminal tail.

General Significance: These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders.