We set the right-hand sides of these equations equal to each other and solve for n, to obtain

$$
\begin{equation*}
n=\left[\frac{\left(z_{0}+z_{1}\right) \sigma}{\left(\mu_{0}-\mu_{1}\right)}\right]^{2} \tag{7.10.3}
\end{equation*}
$$

To find n for our illustrative example, we substitute appropriate quantities into Equation 7.10.3. We have $\mu_{0}=65, \mu_{1}=55$, and $\sigma=15$. From Appendix Table D , the value of z that has .01 of the area to its left is -2.33 . The value of z that has .05 of the area to its right is 1.645 . Both z_{0} and z_{1} are taken as positive. We determine whether C lies above or below either μ_{0} or μ_{1} when we substitute into Equations 7.10.1 and 7.10.2. Thus, we compute

$$
n=\left[\frac{(2.33+1.645)(15)}{(65-55)}\right]^{2}=35.55
$$

We would need a sample of size 36 to achieve the desired levels of α and β when we choose $\mu_{1}=55$ as the alternative value of μ.

We now compute C, the critical value for the test, and state an appropriate decision rule. To find C, we may substitute known numerical values into either Equation 7.10.1 or Equation 7.10.2. For illustrative purposes, we solve both equations for C. First we have

$$
C=65-2.33\left(\frac{15}{\sqrt{36}}\right)=59.175
$$

From Equation 7.10.2, we have

$$
C=55-1.645\left(\frac{15}{\sqrt{36}}\right)=59.1125
$$

The difference between the two results is due to rounding error.
The decision rule, when we use the first value of C, is as follows:
Select a sample of size 36 and compute \bar{x}, if $\bar{x} \leq 59.175$, reject H_{0}. If $\bar{x}>59.175$, do not reject H_{0}.

We have limited our discussion of the type II error and the power of a test to the case involving a population mean. The concepts extend to cases involving other parameters.

EXERCISES

7.10.1 Given $H_{0}: \mu=516, H_{\mathrm{A}}: \mu>516, \quad n=16, \sigma=32, \alpha=.05$. Let $\beta=.10$ and $\mu_{1}=520$, and find n and C. State the appropriate decision rule.
7.10.2 Given $H_{0}: \mu \leq 4.500, \quad H_{\mathrm{A}}: \mu>4.500, \quad n=16, \sigma=.020, \alpha=.01$. Let $\beta=.05$ and $\mu_{1}=4.52$, and find n and C. State the appropriate decision rule.
7.10.3 Given $H_{0}: \mu \leq 4.25, \quad H_{\mathrm{A}}: \mu>4.25, \quad n=81, \sigma=1.8, \alpha=.01$. Let $\beta=.03$ and $\mu_{1}=5.00$, and find n and C. State the appropriate decision rule.

In Exercise 8.2.1 to 8.2.7, go through the ten steps of analysis of variance hypothesis testing to see if you can conclude that there is a difference among population means. Let $\alpha=.05$ for each test. Use Tukey's HSD procedure to test for significant differences among individual pairs of means (if appropriate). Use the same α value for the F test. Construct a dot plot and side-by-side boxplots of the data.
8.2.1. Researchers at Case Western Reserve University (A-2) wanted to develop and implement a transducer, manageable in a clinical setting, for quantifying isometric moments produced at the elbow joint by individuals with tetraplegia (paralysis or paresis of all four limbs). The apparatus, called an elbow moment transducer (EMT), measures the force the elbow can exert when flexing. The output variable is voltage. The machine was tested at four different elbow extension angles, 30, 60, 90 , and 120 degrees, on a mock elbow consisting of two hinged aluminum beams. The data are shown in the following table.

Elbow Angle (Degrees)

30		60		90			120
-0.003	1.094	0.000	-0.001	0.000	-0.007	0.558	0.003
0.050	1.061	0.053	0.010	0.006	0.012	0.529	0.062
0.272	1.040	0.269	0.028	0.026	-0.039	0.524	0.287
0.552	1.097	0.555	0.055	0.053	-0.080	0.555	0.555
1.116	1.080	1.103	0.105	0.108	-0.118	0.539	1.118
2.733	1.051	2.727	0.272	0.278	-0.291	0.536	2.763
0.000	1.094	-0.002	0.553	0.555	-0.602	0.557	0.006
0.056	1.075	0.052	0.840	0.834	-0.884	0.544	0.050
0.275	1.035	0.271	1.100	1.106	-1.176	0.539	0.277
0.556	1.096	0.550	1.647	1.650	-1.725	1.109	0.557
1.100	1.100	1.097	2.728	2.729	0.003	1.085	1.113
2.723	1.096	2.725	-0.001	0.005	0.003	1.070	2.759
-0.003	1.108	0.003	0.014	-0.023	-0.011	1.110	0.010
0.055	1.099	0.052	0.027	-0.037	-0.060	1.069	0.060
0.273	1.089	0.270	0.057	-0.046	-0.097	1.045	0.286
0.553	1.107	0.553	0.111	-0.134	-0.320	1.110	0.564
1.100	1.094	1.100	0.276	-0.297	-0.593	1.066	1.104
2.713	1.092	2.727	0.555	-0.589	-0.840	1.037	2.760
0.007	1.092	0.022	0.832	-0.876	-1.168	2.728	-0.003
-0.066	1.104	-0.075	1.099	-1.157	-1.760	2.694	-0.060
-0.258	1.121	-0.298	1.651	-1.755	0.004	2.663	-0.289
-0.581	1.106	-0.585	2.736	-2.862	0.566	2.724	-0.585
-1.162	1.135	-1.168	0.564	0.000	1.116	2.693	-1.180
0.008	1.143	0.017	0.556	0.245	2.762	2.670	0.000
-0.045	1.106	-0.052	0.555	0.497	0.563	2.720	-0.034
-0.274	1.135	-0.258	0.567	0.001	0.551	2.688	-0.295
-0.604	1.156	-0.548	0.559	0.248	0.551	2.660	-0.579
-1.143	1.112	-1.187	0.551	0.498	0.561	0.556	-1.165
-0.004	1.104	0.019	1.107	0.001	0.555	0.560	-0.019

Elbow Angle (Degrees)

30		60		90			120
-0.050	1.107	-0.044	1.104	0.246	0.558	0.557	-0.056
-0.290	1.107	-0.292	1.102	0.491	0.551	0.551	-0.270
-0.607	1.104	-0.542	1.112	0.001	0.566	0.564	-0.579
-1.164	1.117	-1.189	1.103	0.262	0.560	0.555	-1.162
1.105	1.101		1.104	0.527	1.107	0.551	
	1.103		1.114	0.001	1.104	0.563	
			1.095	0.260	1.109	0.559	
			1.100	0.523	1.108	1.113	
			2.739	-0.005	1.106	1.114	
			2.721	0.261	1.102	1.101	
			2.687	0.523	1.111	1.113	
			2.732	2.696	1.102	1.113	
			2.702	2.664	1.107	1.097	
			2.660	2.722	2.735	1.116	
			2.743	2.686	2.733	1.112	
			2.687	2.661	2.659	1.098	
			2.656	0.548	2.727	2.732	
			2.733	2.739	0.542	2.722	
			2.731	2.742	0.556	2.734	
					2.728	2.747	

Source: Data provided courtesy of S. A. Snyder, M.S.
8.2.2. Patients suffering from rheumatic diseases or osteoporosis often suffer critical losses in bone mineral density (BMD). Alendronate is one medication prescribed to build or prevent further loss of BMD. Holcomb and Rothenberg (A-3) looked at 96 women taking alendronate to determine if a difference existed in the mean percent change in BMD among five different primary diagnosis classifications. Group 1 patients were diagnosed with rheumatoid arthritis (RA). Group 2 patients were a mixed collection of patients with diseases including lupus, Wegener's granulomatosis and polyarteritis, and other vasculitic diseases (LUPUS). Group 3 patients had polymyalgia rheumatica or temporal arthritis (PMRTA). Group 4 patients had osteoarthritis (OA) and group 5 patients had osteoporosis (O) with no other rheumatic diseases identified in the medical record. Changes in BMD are shown in the following table.

Diagnosis

	RA		LUPUS	PMRTA	OA
11.091	7.412	2.961	-3.669	11.146	O
24.414	5.559	0.293	-7.816	-0.838	15.968
10.025	4.761	8.394	4.563	4.082	5.349
-3.156	-3.527	2.832	-0.093	6.645	1.719
6.835	4.839	-1.369	-0.185	4.329	6.445
3.321	1.850	11.288	1.302	1.234	20.243
1.493	-3.933	3.997	5.299	-2.817	3.290
					(Continued)

Diagnosis

RA		LUPUS	PMRTA	OA	O
-1.864	9.669	7.260	10.734	3.544	8.992
5.386	4.659	5.546	1.399	4.160	6.120
3.868	1.137		0.497	1.160	25.655
6.209	7.521		0.592	-0.247	
-5.640	0.073		3.950	5.372	
3.514	-8.684		0.674	6.721	
-2.308	-0.372		9.354	9.950	
15.981	21.311		2.610	10.820	
-9.646	10.831		5.682	7.280	
5.188	3.351			6.605	
-1.892	9.557			7.507	
16.553				5.075	
				0.163	
				12.767	
				3.481	
				0.917	

Source: Data provided courtesy of John P. Holcomb, Ph.D. and Ralph J. Rothenberg, M.D.
8.2.3. Ilich-Ernst et al. (A-4) investigated dietary intake of calcium among a cross section of 113 healthy women ages 20-88. The researchers formed four age groupings as follows: Group A, 20.0-45.9 years; group B, 46.0-55.9 years; group C, 56.0-65.9 years; and group D, over 66 years. Calcium from food intake was measured in $\mathrm{mg} /$ day. The data below are consistent with summary statistics given in the paper.

Age Groups (Years)				Age Groups (Years)			
A	в	c	D	A	в	c	D
1820	191	724	1652			1020	775
2588	1098	613	1309			805	1393
2670	644	918	1002			631	533
1022	136	949	966			641	734
1555	1605	877	788			760	485
222	1247	1368	472				449
1197	1529	1692	471				236
1249	1422	697	771				831
1520	445	849	869				698
489	990	1199	513				167
2575	489	429	731				824
1426	2408	798	1130				448
1846	1064	631	1034				991
1088	629	1016	1261				590
912		1025	42				994
1383		948	767				1781

