Quantum Machine Learning in Feature Hilbert Spaces

Nick Fularczyk

2020

(ロ)、(型)、(E)、(E)、 E) の(()

Overview

- Question: Does a quantum computer "help" in solving an SVM classification problem when the feature space becomes large, and the kernel functions become computationally expensive to estimate?
- Two independent teams try to answer the same question:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- IBM
- Xanadu

Review

Definition

Let \mathcal{X} be a nonempty set, called the input set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a kernel if for any finite subset $\{x^1, \ldots, x^M\} \subset \mathcal{X}$ with $M \ge 2$ and $c_1, \ldots, c_M \in \mathbb{C}$, $\sum_{m,m'=1}^M c_m c_{m'}^* k(x^m, x^{m'}) \ge 0$.

Definition

Let \mathcal{F} be a Hilbert space, called the feature space, \mathcal{X} an input set, and x a sample from the input set. A feature map is a map $\phi: \mathcal{X} \to \mathcal{F}$ from inputs to vectors in the Hilbert space. The vectors $\phi(x) \in \mathcal{F}$ are called feature vectors.

Review

Theorem

Let $\phi : \mathcal{X} \to \mathcal{F}$ be a feature map. The inner product of two inputs mapped to feature space defines a kernel via $k(x,x') := (\phi(x), \phi(x'))_{\mathcal{F}}$, where $(\cdot, \cdot)_{\mathcal{F}}$ is the inner product defined on \mathcal{F} .

Theorem

Let $\phi : \mathcal{X} \to \mathcal{F}$ be a feature map over an input set \mathcal{X} , giving rise to a complex kernel $k(x, x') = (\phi(x), \phi(x'))_{\mathcal{F}}$. The corresponding reproducing kernel Hilbert space has the form

$$\mathcal{R}_k = \{f : \mathcal{X} \to \mathbb{C} \mid f(x) = (w, \phi(x))_{\mathcal{F}} \ \forall \ x \in \mathcal{X}, w \in \mathcal{F}\}$$

Review

Theorem (Representer Thereom)

Let \mathcal{X} be an input set, $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a kernel, \mathcal{D} a data set consisting of data pairs $(x^m, y^m) \in \mathcal{X} \times \mathbb{R}$ and $f : \mathcal{X} \to \mathbb{R}$ a class of model functions that live in the reproducing kernel Hilbert space \mathcal{R}_k of k. Furthermore, assume we have a cost function \mathcal{C} that quantifies the quality of a model by comparing predicted outputs $f(x^m)$ with targets y^m , and which has a regularisation term of the form g(||f||) where $g : [0, \infty) \to \mathbb{R}$ is a strictly monotonically increasing function. Then any function $f^* \in \mathcal{R}_k$ that minimises the cost function \mathcal{C} can be written as

$$f^*(x) = \sum_{m=1}^M \alpha_m k(x, x^m),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

for some parameters $\alpha_m \in \mathbb{R}$.

Squeezing Example

- What is squeezing?
- What is the associated Hilbert space?
 - Fock space
 - Denote the basis as $\beta = \{|0\rangle, |1\rangle, \ldots\}$

Definition

A squeezed vacuum state of the electromagnetic field is defined as

$$|z\rangle = \frac{1}{\sqrt{\cosh(r)}} \sum_{n=0}^{\infty} \frac{\sqrt{(2n)!}}{2^n n!} [-e^{i\varphi} \tanh(r)]^n |2n\rangle$$

where $|n\rangle$ denotes the Fock basis and $z = re^{i\varphi}$ is the complex squeezing factor. Denote $|z\rangle = |(r, \varphi)\rangle$

Squeezing Example

If $(x_1, \ldots, x_N)^T \in \mathbb{R}^N$ then we can define the joint state of N squeezed vacuum modes as

$$\phi: \mathbf{x} \to |(\mathbf{c}, \mathbf{x})\rangle,$$

where $|(c, x)\rangle = |(c, x_1)\rangle \bigotimes \ldots \bigotimes |c, x_N\rangle \in \mathcal{F}$, where \mathcal{F} is now a multimode Fock space and c is a fixed constant hyperparameter. The kernel associated with this feature map is

$$k(x,x';c) = \prod_{i=1}^{N} \langle (c,x_i) | (c,x'_i) \rangle$$

with

$$\langle (c, x_i) | (c, x'_i) \rangle = \sqrt{rac{sech(c)sech(c)}{1 - e^{i(x'_i - x_i)}tanh(c)tanh(c)}}$$

(日)(1)<

Squeezing Example

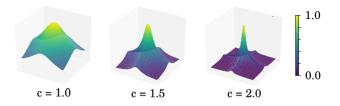
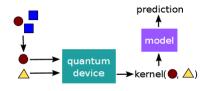


FIG. 4. Shape of the squeezing kernel function $\kappa_{sq}(x, x')$ from Equation (7) for different squeezing strength hyperparameters c. The input x is fixed at (0,0) and x' is varied. The plots show the interval [-1,1] on both horizontal axes.

人口 医水黄 医水黄 医水黄素 化甘油

Overview of Quantum Kernel Estimator

- Needs to implement a feature-embedding circuit which is a map U_φ(x) such that U_φ(x)|0···0⟩ = |φ(x)⟩
- Needs to estimate inner products between quantum states
- Input these estimates into a model which runs on a classical computer



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

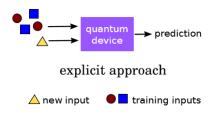
implicit approach

Overview of Quantum Variational Circuit

 Goal is to find a state |w> such that

 $f(x;w) = \langle w | \phi(x) \rangle$

- ► $|w\rangle$ is prepared by a variational circuit, $W(\theta)$, that depends on trainable parameters θ to give $|w(\theta)\rangle = W(\theta)|0\rangle$
- Paper follows a slightly more general approach and computes the state W(θ)Uφ|0···0⟩ and then uses measurements to determine the output of the model.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Kernel Estimator based on two-dimensional Squeezing

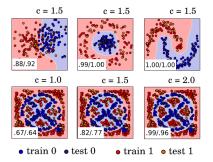
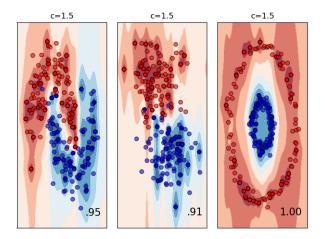


FIG. 5. Decision boundary of a support vector machine with the custom kernel from Eq. (7). The shaded areas show the decision regions for Class 0 (blue) and Class 1 (red), and each plot shows the rate of correct classifications on the training set/test set. The first row plots three standard 2-dimensional datasets: 'circles', 'moons' and 'blobs', each with 150 test and 50 training samples. The second row illustrates that increasing the squeezing hyperparameter c changes the classification performance. Here we use a dataset of 500 training and 100 test samples. Training was performed with python's *scikitlearn* SVC classifier using a custom kernel which implements the overlap of Eq. (8).

 $(\exists) \land \exists) \land \exists) \land \bigcirc$

Quantum Kernel Estimator based on two-dimensional Squeezing



References

- Schuld, M. and Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019). https://arxiv.org/abs/1803.07128
- Havlíček, V., Córcoles, A.D., Temme, K. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).