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Overview

I Question: Does a quantum computer ”help” in solving
an SVM classification problem when the feature space
becomes large, and the kernel functions become
computationally expensive to estimate?

I Two independent teams try to answer the same question:
I IBM
I Xanadu



Review

Definition
Let X be a nonempty set, called the input set. A function
k : X x X → C is called a kernel if for any finite subset
{x1, . . . , xM} ⊂ X with M ≥ 2 and c1, . . . , cM ∈ C,∑M

m,m′=1 cmc
∗
m′k(xm, xm

′
) ≥ 0.

Definition
Let F be a Hilbert space, called the feature space, X an input set,
and x a sample from the input set. A feature map is a map
φ : X → F from inputs to vectors in the Hilbert space. The
vectors φ(x) ∈ F are called feature vectors.



Review

Theorem
Let φ : X → F be a feature map. The inner product of two inputs
mapped to feature space defines a kernel via
k(x , x ′) := (φ(x), φ(x ′))F , where (·, ·)F is the inner product
defined on F .

Theorem
Let φ : X → F be a feature map over an input set X , giving rise
to a complex kernel k(x , x ′) = (φ(x), φ(x ′))F . The corresponding
reproducing kernel Hilbert space has the form

Rk = {f : X → C | f (x) = (w , φ(x))F ∀ x ∈ X ,w ∈ F}



Review

Theorem (Representer Thereom)

Let X be an input set, k : X x X → R a kernel, D a data set
consisting of data pairs (xm, ym) ∈ X x R and f : X → R a class
of model functions that live in the reproducing kernel Hilbert space
Rk of k . Furthermore, assume we have a cost function C that
quantifies the quality of a model by comparing predicted outputs
f (xm) with targets ym, and which has a regularisation term of the
form g(||f ||) where g : [0,∞)→ R is a strictly monotonically
increasing function. Then any function f ∗ ∈ Rk that minimises the
cost function C can be written as

f ∗(x) =
M∑

m=1

αmk(x , xm),

for some parameters αm ∈ R.



Squeezing Example

I What is squeezing?
I What is the associated Hilbert space?

I Fock space
I Denote the basis as β = {|0〉, |1〉, . . .}

Definition
A squeezed vacuum state of the electromagnetic field is defined as

|z〉 =
1√

cosh(r)

∞∑
n=0

√
(2n)!

2nn!
[−e iϕtanh(r)]n|2n〉

where |n〉 denotes the Fock basis and z = re iϕ is the complex
squeezing factor. Denote |z〉 = |(r , ϕ)〉



Squeezing Example

If (x1, . . . , xN)T ∈ RN then we can define the joint state of N
squeezed vacuum modes as

φ : x → |(c , x)〉,

where |(c , x)〉 = |(c, x1)〉
⊗
. . .

⊗
|c , xN〉 ∈ F , where F is now a

multimode Fock space and c is a fixed constant hyperparameter.
The kernel associated with this feature map is

k(x , x ′; c) =
N∏
i=1

〈(c , xi )|(c , x ′i )〉

with

〈(c, xi )|(c , x ′i )〉 =

√
sech(c)sech(c)

1− e i(x
′
i−xi )tanh(c)tanh(c)



Squeezing Example



Overview of Quantum Kernel Estimator

I Needs to implement a
feature-embedding circuit
which is a map Uφ(x) such
that Uφ(x)|0 · · · 0〉 = |φ(x)〉

I Needs to estimate inner
products between quantum
states

I Input these estimates into a
model which runs on a
classical computer



Overview of Quantum Variational Circuit

I Goal is to find a state |w〉
such that

f (x ;w) = 〈w |φ(x)〉

I |w〉 is prepared by a
variational circuit, W (θ),
that depends on trainable
parameters θ to give
|w(θ)〉 = W (θ)|0〉

I Paper follows a slightly more
general approach and
computes the state
W (θ)Uφ|0 · · · 0〉 and then
uses measurements to
determine the output of the
model.



Quantum Kernel Estimator based on two-dimensional
Squeezing



Quantum Kernel Estimator based on two-dimensional
Squeezing
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