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1 Introduction

Machine Learning is centered around the concepts of Data, Models and Learning.
It originated in the computer science community [3] and can be roughly described
as the field of study concerned with the development of automated methods for
learning good models from data. Here the expression ”good model” refers to the
predictive power of the method. One guiding principle of Machine Learning is that
a model is as good as its ability to describe unseen data.

In this chapter, we illustrate the main ideas from machine learning by adapting
some material from [1]. Even though the data that can be considered using its meth-
ods can be very general and include objects such as texts and chemical formulas,
below we consider the situation where data is in numerical form.

Let X = {x1, . . . ,xN}where each xn ∈RD. We refer to any xn ∈X as an example
or data point. In matrix form, we can write

X =


x1,1 x2,1 . . . xN,1
x1,2 x2,2 . . . xN,2

...
...

. . .
...

x1,D xD,2 . . . xN,D

 ∈ RD×N ,

where each column is a data point or example and each row represents a particular
feature or attribute. In the typical supervised learning setting, to each data point
xn ∈ RD, we associate a label yn ∈ R.
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1.1 Learning a model

We can formalize the problem of learning as the problem of finding a predictor that
assigns a data point to a label. In the machine learning literature, we can identify
two main approaches to handle the predictor: it can be either a (1) function or (2) a
probabilistic model.

• Case (1): the predictor is a function. Here the predictor function f maps a feature
vector x to a label y. For example, we can choose f : RD→R of the form f (x) =
θ tx+θ0 where θ ∈ RD and θ0 ∈ R are the parameters of the predictor.

• Case (2): the predictor is a probabilistic model. For instance, the predictor is a
probability density function with finitely many parameters such as the normal
distribution.

The goal of learning is to determine the parameters of a predictor such that it
performs well on unseen data. We can identify three (algorithmic) phases in the
learning process.

• (1) Prediction or inference. During this phase, the predictor is applied to unseen
data (= test data) to generate an outcome.

• (2) Training or parameter estimation. During this phase, We adjust the param-
eters of the predictor based on training data. To perform this task, we need a
measure of quality to control the performance of the predictor. For that, there are
two main strategies depending on the predictor being a function or a probabilis-
tic model. In the first case, a widely used strategy consists in using Empirical
Risk Minimization. In the second case, another widely used method is Maximum
Likelihood Estimation.

• (3) Parameter tuning or model selection. As part of the learning process, we need
make high-level decisions about the structure of the predictor. Parameter tuning
or model selection is concerned about making this decision. Recall that the end
goal of the learning process is for the predictor to perform well on unseen data.
This goal typically entails to make appropriate choices on the structure of the
predictor.

Below, we briefly describe some general ideas about carrying over the learning
process in the two cases where the predictor is a function or a probability model.

2 Predictor as a function

Assume we are given a set of N samples X = {x1, . . . ,xN} ⊂ RD and the corre-
sponding (scalar) labels Y = {y1, . . . ,yN} ⊂ R. We want to find a predictor of the
form f (·;θ) : RD→ R, with a parameter vector θ (we assume for simplicity that θ

is finite dimensional) having the property that f (xn,θ) provides a good approxima-
tion of the labels yn, for all n = 1, . . . ,N. For example, we can choose our predictor
to be a linear function f (x,θ) = θ tx where θ ∈ RD.
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2.1 Training

The goal of the training, is to exploit the data pairs {(x1,y1), . . .(xN ,yN)} in order to
determine the best parameters θ of our predictor f (·,θ); that is, training has the aim
to possibly identify the value of the parameter θ ∗ giving the best fit of f to the data.
Here the notion of ‘best fit’ is determined by the introduction of an appropriate loss
function L(yn, f (xn,θ)) that takes the ground truth yn and the prediction f (xn,θ) as
input and outputs a non-negative number (the loss) measuring the error made in this
particular prediction. The goal of training is to find the parameter θ ∗ that minimizes
the loss L.

2.2 Empirical risk minimization

We assume that the example pairs (x1,y1), . . . ,(xn,yn) are independent and iden-
tically distributed (i.i.d.). This means that any two data points (xi,yi) and (x j,y j)
are statistically indepent of each other and that they are drawn from the (unknown)
distribution. This assumption implies that the empirical mean is a good estimate of
the population mean. Hence we define the average loss on the training data as the
empirical risk

Remp( f ,X ,Y ) =
1
N

N

∑
n=1

L(yn, f (xn;θ)).

Example 1 (Least-squares linear regression). Let (x1,y1), . . . ,(xN ,yN) be a collec-
tion of pairs in RD×R. We want to find a predictor function of the form

. f (x;θ ,θ0) = θ
tx+θ0, x ∈ RD,θ ∈ RD,θ0 ∈ R. (1)

Observe that we can map any x = (x1, . . . ,xD)t ∈ RD to x̃ = (1,x(1), . . . ,x(D))t ∈
RD+1 and similarly any θ = (θ (1), . . . ,θ (D))t ∈ RD to θ̃ = (θ0,θ

(1), . . . ,θ (D))t ∈
RD+1. Using this map, we can redefine the affine function f in (1) as the linear
function f̃ : RD+1→ R given by

f̃ (x̃, θ̃) = θ̃
t x̃.

To find the best parameter θ̃ of the predictor f̃ (·, θ̃) for the given data we can use
the squared loss function L(y, f̃ (x, θ̃)) = (y− f̃ (x̃; θ̃))2. Under these assumptions,
the empirical risk becomes

Remp( f̃ ,X ,Y ) =
1
N

N

∑
n=1

(yn− f̃ (x̃n, θ̃))
2.=

1
N

N

∑
n=1

(yn− θ̃
t x̃)2.

Hence, to minimize the empirical risk we solve the expression
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. min
θ̃∈RD+1

1
N

N

∑
n=1

(yn− θ̃
t x̃)2 = min

θ̃∈RD+1

1
N
‖Y − X̃ θ̃‖2, (2)

where Y is the vector containing the labels yn as entries and X̃ containing the data
points x̃n as columns. The minimization problem (2) is known as the least-square
linear regression problem.

As we observed above, we are not satisfied in a predictor that only performs
well on the training data. Rather, we seek to find a predictor that performs well on
unseen data. More precisely, we are interested in finding a predictor function f (·,θ)
that minimizes the expected risk

Rtrue( f ) = Ex,y[L(y, f (x))]

where y is the label of x and f (x) is the prediction. In the expression above, the
expectation Ex,y is taken over the infinite set of all possible data and labels. Clearly,
the notion of expected risk leads to a number of practical questions, most notably:
how do we estimate expected risk from finite data? How do we manage our training
procedure to ensure that we can control the expected risk?

It turns out that empirical risk minimization may lead to overfitting. This is the
situation where the predictor fits closely the training but does not generalize well on
new data, i.e., Remp underestimates Rtrue. How to address this situation is a major
challenge in machine learning application.

One strategy that can be used to avoid overfitting is regularization consisting in
finding a compromise between accurate solution of empirical risk minimization and
the size or complexity of the model. In other words, it is a method that discourages
complex or extreme solutions to an optimization problem in favor of simpler ones.

Example 2 (Regularized least squares). It is known if the number of variables does
not exceed the number of data, the regression model may suffers from poor gen-
eralization. In this case, a simple regularization strategy is to add a penalty term
involving the parameter θ :

minθ∈RD
1
N
‖Y − X̃ θ̃‖2 +λ‖θ̃‖2.

The term ‖θ‖2 is called a regularizer and λ is the regularization parameter. The
effect of the regularization is to force the solution to be ‘sparse’ in some way or to
reflect other prior knowledge about the problem such as information about correla-
tions between features

Bibliographical note.. The original development of empirical risk minimization
is due to Vapnik [4, 5] and was framed in a rather heavily theoretical language.
The area of study that developed following this work is called statistical learning
theory [2].

Note from [1].: ”Thinking about empirical risk minimization as ‘probability free’
is incorrect. There is an underlying unknown probability distribution p(x,y) that



What is Machine Learning? 5

governs the data generation. However, the approach of empirical risk minimization
is agnostic to that choice of distribution. This is in contrast to standard statistical
approaches that explicitly require the knowledge of p(x,y). Furthermore, since the
distribution is a joint distribution on both examples x and labels y, the labels can
be nondeterministic. In contrast to standard statistics we do not need to specify the
noise distribution for the labels y.”

3 Predictor as a probability model

We briefly sketch the general ideas that are applied when the predictor is a probabil-
ity model. There is a parallel with the methodology we presented above where risk
minimization becomes parameter estimation, loss function becomes likelihood and
finally and regularization becomes a prior.

3.1 Maximum likelihood estimation

We want to determine the parameters of the probability model that fit data well.
To this end, we apply the notion of likelihood function. Hence, we assume that
data are random variables associated with a probability density function p(x;θ)
parametrized by θ . We define the negative log-likelihood by

Lx(θ) =− log p(x|θ).

Note that, in this expression, θ is the variable (it is the quantity we want do find, for
the given data) and x is fixed. To find the value of the parameter vector θ that best
fit the data, we want to maximize the likelihood and this is achieved by minimizing
the function Lx(θ) with respect to θ .

In the example below, we illustrate this approach using a normal probability
model.

Fig. 1 The uncertainty of the data is described using a Gaussian model.

Example 3 (Gaussian distribution). In this example, we assume that we can explain
data uncertainty using a Gaussian probability model where the uncertainty of any
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observation is a Gaussian noise with zero mean and fixed variance σ2. In addition,
we also assume a linear model θ T xn for prediction. That is, we assume that for any
observations (xn,yn)

p(yn|xn,θ) = N(yn,θ
T xn,σ

2). (3)

This is illustrated in Fig. 1
We are given a set of examples (x1,y1), . . . ,(xN ,yN) that are independent and

identically distributed (idd). Independence implies that the likelihood of the whole
data set (Y = {y1, . . . ,yN} and X = {x1, . . . ,xN}) factorizes into a product of the
likelihoods of each individual example

P(Y |X ,θ) = Π
N
n=1 p(yn|xn,θ).

The property of being ‘identically distributed’ means that each term in the former
product is the same distribution given by (3). Hence, we compute the negative log-
likelihood as

L (θ) = −
N

∑
n=1

log p(yn|xn,θ)

= −
N

∑
n=1

log N(yn|θ T xn,σ
2)

= −
N

∑
n=1

log
1√

2πσ2
exp
(
−yn−θ T xn

2σ2

)
=

1
2σ2

N

∑
n=1

(yn−θ
T xn)

2−
N

∑
n=1

log
1√

2πσ2
.

Solving the maximum likelihood estimation is equivalent to minimizing L (θ).
From the expressions above it is clear that this minimization is equivalent to solving
the least-square regression problem.

Remark 1. Unlike the simple example above, it is not possible to derive a closed
solution of the maximum likelihood estimation using general (non-Gaussian) prob-
ability models.
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