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1 Introduction

Support-vector machines (SVMs), also called support-vector networks, are super-
vised learning methods designed to solve binary classification problems [1,2]. Given
a set of labeled training data, each marked as belonging to either one of two cate-
gories, an SVM algorithm computes an optimal hyperplane that assigns each new
data point to one category or the other, making it a non-probabilistic binary clas-
sifier. The optimal criterion for the hyperplane consists in determining the hyper-
plane achieving the widest possible gap between the two categories. In addition to
performing linear classification, SVMs can also perform a non-linear classification
using what is called the kernel trick – a method that implicitly maps input data into
an appropriate feature space where feature vectors are linearly separable.

We start by considering the linear SVM case.

2 Linear SVM

Let H be a Hilbert space over R and X = {x1,x2, . . . ,xn} ⊂H . In the simplest
case, one can consider H = Rd .

We consider the binary classification problem where xi ∈ X belongs to either of
two classes with labels yi ∈ {−1,+1}.

Observe that any hyperplane in H has the form

Hw,b := {x ∈H : 〈w,x〉+b = 0}
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where w ∈H and b ∈ R. Geometrically, the vector w
‖w‖ can be identified with the

unit normal vector to the hyperplane and b with the offset or distance of the hyper-
plane from the origin (cf. 1).

Accordingly, we can define a decision function f (x) = sgn(〈w,x〉+b) that takes
values in the set {−1,+1} depending on x falling on either side of the hyperplane
Hw,b.

To develop the theory of SVMs, we start by assuming that the points X ∈H are
linearly separable, that is, there exists an hyperplane Hw,b separating the two classes.

Definition 1. Let D = {(xi,yi)⊂H ×{−1,+1} : i = 1, . . . ,n}. The set D is said to
be linearly separable if there exist w ∈H and b ∈ R such that

yi (〈w,x〉+b)> δ ∀i = 1, . . .n,

for some δ > 0. In this case, Hw,b is said to be a separating hyperplane.

Clearly, if a set of points is linearly separable, there are in general multiple sepa-
rating hyperplanes. Among those hyperplanes, the SVM approach seeks to find the
one with the maximum margin of separation between any (training) point and the
hyperplane.

Definition 2. The optimal separating hyperplane for a set D = {(xi,yi) ⊂ H ×
{−1,+1} : i = 1, . . . ,n} is the solution of:

max
w∈H ,b∈R

min{‖xi− x‖ : x ∈H ,〈w,x〉+b = 0, and i = 1,2, . . . ,n} (1)

It is easy to see that any hyperplane Hw,b can be rescaled by multiplying w and
b by the same non-zero constant λ so that Hw,b = Hλw,λb for all nonzero. We can
remove this unnecessary degree of freedom. by rescaling w and b so that the point(s)
closest to the hyperplane satisfy |〈w,xi〉+b|= 1.

Definition 3. The hyperplane Hw,b is said to be in canonical form with respect to
X = {xi ∈H : i = 1, . . . ,n} if mini |〈w,xi〉+b|= 1.

If Hw,b is a canonical hyperplane, then a vector in xi ∈ X is said to be a
support vector if it belongs to either one of the hyperplanes H−1 or H1, where
Hk := {x ∈H : 〈w,x〉+b = k}.

If x ∈ H−1 and x′ ∈ H1, then

2 =
∣∣〈w,x〉+b−

(〈
w,x′

〉
+b
)∣∣

2 =
∣∣〈w,x〉−〈w,x′〉∣∣

2 =
∣∣〈w,x− x′

〉∣∣ =⇒ ∣∣∣∣〈 w
‖w‖

,x− x′
〉∣∣∣∣= 2

‖w‖
.

This calculation shows that the distance between H−1 and H1 is 2/‖w‖ and that, as
a consequence, the distance between Hw,b and a support vector is 1

‖w‖ .
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Fig. 1 Binary classification problem. Two set of points, illustrated as balls and diamonds, are
separated by an hyperplane illustrated as a solid line. Rescaling the vector w and the constant b, the
point(s) x closest to the hyperplane satisfy the condition | 〈w,x〉+b|= 1. This normalization gives
the canonical form of the hyperplane satisfying yi(〈w,xi〉+ b) ≥ 1 for all points xi. The optimal
separating hyperplane, as shown in the figure, maximizes the margin, that is, the distance of the
closest points to the hyperplane.

Alternatively, using the distance formula from a point to a plane, one can derive
that d(x,Hw,b) =

|〈w,xi〉+b|
‖w‖ and, thus, for a support vector, this distance is 1

‖w‖ .
To construct the optimal separating hyperplane for a set D, we need to find the

w and b that maximize the margin (1) under the assumption that yi (〈w,xi〉+b) ≥ 1
for all i = 1, . . . ,n. By the observation we just made on the size of the margin, this
is equivalent to solving the following optimization problem

min
w∈H

τ(w) =
1
2
‖w‖2

subject to: yi (〈w,xi〉+b)≥ 1, ∀i = 1, . . . ,n.
(2)

This is a constrained quadratic optimization problem with n+ 1 parameters. Since
it is quadratic, it has a single global minimum.
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Using the method of Lagrange multipliers, problem (2) can be reformulated. Us-
ing the non-negative constants α1, . . . ,αn, we define the Lagrangian

L(w,b,α) :=
1
2
‖w‖2−

n

∑
i=1

αi (yi (〈w,xi〉+b)−1) .

Then problem (2) can be solved as

min
w∈H ,b∈R

L(w,b,α)

subject to αi ≥ 0, for all i = 1, . . .n.
(3)

The problem (3) above is called the primal constrained optimization problem. Here
the Lagrangian L has to be minimized with respect to the primal variables w and
b, while maximized with respect to the dual variables αi. Hence the solution is a
saddle point of the multivariate function. Hence, at this saddle point, the derivatives
of L with respect to two primal variables must be zero. A direct calculation gives:

∂L
∂b

= 0 =⇒ ∑
i

αiyi = 0,

∂L
∂w

= 0 =⇒ w = ∑
i

αiyixi.

(4)

Also, b = y j−∑i αiyi
〈
xi,x j

〉
, where j is such that x j is a support vector.

Eq. (4) shows that the solution w is a linear combination of the support vectors,
that is, those vectors xi for which αi > 0.

By substituting equations (4) into the Lagrangian formulation and eliminating
the primal variables w and b, problem (3) is reformulated (and is equivalent) to the
following problem dual optimization problem:

max
α1,...αn

L(α) = ∑
i

αi−
1
2 ∑

i
∑

j
αiα jyiy j

〈
xi,x j

〉
subject to ∑

i
αiyi = 0 and αi ≥ 0 for all i = 1, . . . ,n.

(5)

Similarly, using equation (4) the decision function can be written as

f (x) = sgn

(
∑

i
αiyi 〈xi,x〉+b

)
.

We remark is that the advantage of the dual formulation is that the decision func-
tion is evaluated in terms of inner products between the input x and the support
vectors xi. This observation is critical for the extension of the SVM approach to
nonlinear classification problems.
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Fig. 2 A set of points in the plane belonging to one of two classes, denoted as blue circles
and red squares, is separated by a line using the SVM algorithm (https://tinyurl.com/
lsvmprimal). The dotted lines are the lines of equation Hk = {x ∈H : 〈w,x〉+b = k}, where
k =±1, and the points lying on those lines are the support vectors.

2.1 Numerical implementation

See links https://tinyurl.com/lsvmprimal and https://tinyurl.com/lsvmdual for a Python
implementation of (3) and (5), respectively.
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