
Reproducing Kernel Hilbert Spaces - Part I

Scribes: Yingxue Su, Qianfan Bai

In this section, we introduce reproducing kernel Hilbert spaces (RKHSs) and de-
scribe their relation to kernels following the material from [1, Ch. 4.2].

Definition 1. Let X 6= /0 and H be a K−Hilbert function space over X , i.e., a Hilbert
space that consists of functions with domain in X and range into K.

i) A function k : X×X →K is called a reproducing kernel of H if k(·,x) ∈H for
all x ∈ X and it satisfies the reproducing property

f (x) = 〈 f ,k(·,x)〉H

for all f ∈ H and all x ∈ X .
ii) The space H is called a reproducing kernel Hilbert space (RKHS) over X if

for all x ∈ X the Dirac functional δx : H→K defined by

δx( f ) = f (x), f ∈ H,

is continuous.

Remark 1. We observe that a RKHS is a space of functions, hence L2(dµ) is not a
RKHS.

If H is a RKHS, then norm convergence implies pointwise convergence. To show
that this is the case, let ( fn) ∈ H be such that ‖ fn− f‖H → 0 as n→ ∞ with f ∈ H.
It follows that for any x ∈ X there is a constant c such that

|δx( fn)−δx( f )| ≤ c‖ f − fn‖H .

Hence
lim
n→∞

fn(x) = lim
n→∞

δx( fn) = δx( f ) = f (x).

Lemma 1. (Reproducing kernels are kernels). Let H be a Hilbert function space
over X that has a reproducing kernel k. Then H is a RKHS and H is also a feature
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space of k, where the feature map Φ : X → H is given by

Φ(x) = k(·,x), x ∈ X .

We call Φ the canonical feature map of k.

Proof. First we show that δx is continuous so that H is a RKHS. Since k is a repro-
ducing kernel in H, for any f ∈ H,

|δx( f )|= | f (x)|= |〈 f ,k(·,x)〉H | ≤ ‖ f‖‖k(·,x)‖.

This shows that δx is continuous for any x ∈ X . Therefore, H is a RKHS.
Next , we show that H is a feature space of k with feature map Φ . For a fixed

x′ ∈ X , let f = k(·,x′). Then, for any x ∈ X ,

〈Φ(x′),Φ(x)〉= 〈k(·,x′),k(·,x)〉= 〈 f ,k(·,x)〉= f (x) = k(x,x′).

Therefore, H is a feature space of k with a feature map Φ .

We have just seen that every Hilbert function space with a reproducing kernel is a
RKHS. The following theorem shows that, conversely, every RKHS has a (unique)
reproducing kernel over X and that this kernel can be determined by the Dirac func-
tionals δx, x ∈ X .

Theorem 1. (Every RKHS has a unique reproducing kernel). Let H be a RKHS over
X and H ′ be the dual space of H. Then k : X×X →K defined by

k(x,x′) = 〈δx,δx′〉H ′ , x,x′ ∈ X ,

is the only reproducing kernel of H. Furthermore, if (ei)i∈I is an orthonormal basis
of H, then for all x,x′ ∈ X, we have

k(x,x′) = ∑
i∈I

ei(x)ei(x′).

Proof. First, we show that k is a reproducing kernel by showing that the reproduc-
ing property holds. By Riesz representation theorem, there exists an isometric anti-
linear isomorphisim I : H ′→ H that assigns to any g′ ∈ H ′ a representing element
in H; that is

g′( f ) = 〈 f , Ig′〉,

for all f ∈ H, g′ ∈ H ′. In particular, for g′ = δx ∈ H ′, f = Iδx′ ∈ H, then

〈Iδx′ , Iδx〉H = δx(Iδx′).

With this observation, for all x,x′ ∈ X ,

k(x,x′) def
= 〈δx,δx′〉H ′

Riesz
= 〈Iδx′ , Iδx〉H = δx(Iδx′)

def
= Iδx′(x).



Reproducing Kernel Hilbert Spaces - Part I 3

This shows that k(·,x′) = Iδx′ for all x′ ∈ X . Hence,

f (x′) def
= δx′( f ) = 〈 f , Iδx′〉H = 〈 f ,k(·,x′)〉

for all x′ ∈ X , and this shows that k has the reproducing property.
To show uniqueness, let k̃ be an arbitrary reproducing kernel on H. For any x′ ∈X ,

given a basis (ei)i∈I ∈ H, we have

k̃(·,x′) = ∑
i∈I
〈k̃(·,x′),ei〉ei = ∑

i∈I
〈ei, k̃(·,x′)〉ei.

By the reproducing property of k̃, we have

〈ei, k̃(·,x′)〉ei = ei(x′)ei.

Therefore,
k̃(·,x′) = ei(x′)ei.

Since k̃ and (ei)i∈I are arbitrarily chosen, we find k̃ = k. Therefore, k is the only
reproducing kernel of H.

Remark 2. We remark that the Hilbert space H in the proof does not have to be
separable. If H is not separable, (ei)i∈I is an uncountable set and the proof still
works for this case. Recall that every Hilbert space H has an orthonormal basis. H
is separable if and only if it admits a countable orthonarmal basis.

Theorem 1 shows that a RKHS uniquely determines its reproducing kernel; this
reproducing kernel is actually a kernel by Lemma 1. The following theorem now
shows that, conversely, every kernel has a unique RKHS. Consequently, we have a
one-to-one relation between a kernel and a RKHS.

Theorem 2. Let X 6= /0 and k be a kernel over X with feature space H0 and feature
map Φ0 : X → H0. Then

H := { f : X →K | ∃w ∈ H0 with f (x) = 〈w,Φ0(x)〉H0 f or all x ∈ X}

equipped with the norm

‖ f‖H := inf{‖w‖H0 : w ∈ H0 with f = 〈w,Φ0(·)〉H0}

is the only RKHS for which k is a reproducing kernel.

Proof. First, we show that H is a Hilbert space. We observe that H is a vector space
of functions from X →K. Define V : H0→H by V w = 〈w,Φ0(·)〉H0 for w ∈H0. By
this notation, for any f ∈ H, we write

‖ f‖H = inf
w∈V−1( f )

‖w‖H0 .
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To show that ‖ · ‖H is a Hilbert space norm, let (wn) ⊂ kerV = {w ∈ H0|V w = 0}
with the property that limn→∞ wn = w. Then 〈w,Φ(x)〉H0 = limn→∞〈wn,Φ(x)〉 = 0
for any x ∈ X . This shows that w ∈ kerV and, hence, kerV is closed. Denoting
H̃ = (kerV )⊥, we can write H0 = kerV ⊕ H̃. Then, by construction, the restriction
V|H̃ : H̃ → H of V to H̃ is injective. We want to show that V|H̃ is also surjective.
For any f ∈ H, there exists w ∈ H0 with f (x) = 〈w,Φ0(x)〉H0 = V w(x). Rewrite
w = w0 + w̃ with w0 ∈ H0 and w̃ ∈ H̃. Then f = V (w0 + w̃) = V w̃ = V|H̃ w̃. This
shows that V|H̃ is surjective and, thus, V|H̃ is also bijective.

Let (V|H̃)
−1 be the inverse operator of V|H̃ . Then we have

‖ f‖2
H = inf

w∈V−1({ f})
‖w‖2

H0
= inf

w0∈kerV,w̃∈H̃,w0+w̃∈V−1({ f})
‖w0 + w̃‖2

H0

= inf
w0∈kerV,w̃∈H̃,w0+w̃∈V−1({ f})

‖w0‖2
H0

+‖w̃‖2
H0

= ‖(V|H̃)−1 f‖2
H̃ .

Since H̃ is a Hilbert space norm, then ‖ · ‖H is also a Hilbert space norm. Hence we
have shown that V|H̃ is an isometric isomorphism from H̃ to H.

To show that k is a reproducing kernel of H, note that, for any x ∈ X ,

k(·,x) = 〈Φ0(x),Φ0(·)〉=V Φ0(x).

Since 〈w,Φ0(x)〉=V w(x) = 0 for any w ∈ kerV , then Φ0(x) ∈ (kerV )⊥ = H̃. Since
V|H̃ : H̃→ H is isometric, we obtain that

f (x) = 〈(V|H̃)−1 f ,Φ0(x)〉H0 = 〈 f ,V|H̃Φ0(x)〉H = 〈 f ,k(·,x)〉H

for all f ∈H, x∈ X , which is the reproducing property of k. Therefore, H is a RKHS
by Lemma 1.

To prove the uniqueness, we first show that the set

Hpre := {
n

∑
i=1

αi k(·,xi) : n ∈ N,α1, ...,αn ∈K,x1, ...,xn ∈ X}

is dense in any RKHS Ĥ with k as the reproducing kernel. By the definition of
reproducing kernel, we observe that k(·,x) ∈ Ĥ for all x ∈ X . Hence, Hpre ⊂ Ĥ.
Now we suppose that Hpre is not dense in Ĥ. Then, (Hpre)

⊥ 6= {0}. Therefore, there
exists a function g ∈ (Hpre)

⊥ and a x ∈ X with g(x) 6= 0. Since g ∈ (Hpre)
⊥ and

k(·,x) ∈ Ĥ, 〈g,k(·,x)〉= 0. By the reproducing property of k, 〈g,k(·,x)〉= g(x) 6= 0.
This is a contradiction. Therefore, Hpre is dense in any RHKS.

For any f := ∑
n
i=1 αik(·,xi) ∈ Hpre, by the reproducing property, notice that

‖ f‖2
Ĥ =

n

∑
i=1

n

∑
j=1

αiα j〈k(·,xi),k(·,x j)〉Ĥ =
n

∑
i=1

n

∑
j=1

αiα jk(x j,xi).
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Let us now prove that k has only one RKHS. Let H1 and H2 be two RKHSs
of k. We just proved that Hpre is dense in both H1 and H2 and that the norms of
H1 and H2 coincide on Hpre. Choose f ∈ H1. There exists a sequence ( fn) ⊂ Hpre
with ‖ fn− f‖H1 → 0. Since Hpre ⊂ H2, the sequence ( fn) is also contained in H2,
and since the norms of H1 and H2 coincide on Hpre, the sequence ( fn) is a Cauchy
sequence in H2. Therefore, there exists a g ∈ H2 with ‖ fn− g‖H2 → 0. Since the
convergence with respect to a RHKS norm implies pointwise convergence, we then
find f (x) = g(x) for all x ∈ X , i.e., we have shown f ∈ H2. Furthermore, ‖ fn −
f‖H1 → 0 and ‖ fn− f‖H2 → 0 imply

‖ f‖H1 = lim
n→∞
‖ fn‖H1 = lim

n→∞
‖ fn‖Hpre = lim

n→∞
‖ fn‖H2 = ‖ f‖H2 .

Therefore, H1 is isometrically included in H2. Similarly, we can prove that H2 ⊂H1.
So the reproducing kernel k has a unique RKHS.
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