Reproducing Kernel Hilbert Spaces - Part II

Scribes: Malcolm Davies and Ahmed Abouserie

1 Properties of Reproducing Kernel Hilbert Spaces

We have seen that there is a one-to-one correspondence between kernels and reproducing kernel Hilbert spaces (RKHS). In this section, we study properties of functions in a RKHS that are inherited from the reproducing kernel function. Conversely, properties of a reproducing kernel such as boundedness, measurability and integrability are characterized in terms of analogous properties of all functions in the associated RKHS.

1.1 Boundedness

We recall that, for a function f on a topological space Z, the uniform norm of f is given by $||f||_b = \sup_{z \in Z} |f(z)|$ (see [1, Chapters 4.2]). For kernel functions K on $X \times X$, we introduce the norm $|| \cdot ||_{\infty}$ (not to be confused with the essential supremum) that is given by:

$$\|K\|_{\infty} := \sup_{x \in X} \sqrt{K(x, x)}.$$
(1)

Note that in general, $||K||_b \neq ||K||_{\infty}$ for any such *K*. However, it is natural to inquire whether there exists a correlation between the two norms in terms of characterizing the boundedness of *K*. The following lemma is a consequence of the reproducing property.

Published: February 21, 2020

Lemma 1. Let $K : X \times X \to \mathbb{K}$ be a kernel on a reproducing kernel Hilbert space \mathscr{H} with the feature map $\Phi : X \to \mathscr{H}$. Then K is bounded iff

$$\|K\|_{\infty} := \sup_{x \in X} \sqrt{K(x,x)} < \infty$$

Proof. Recall that the reproducing property of \mathscr{H} implies that for any $x, x' \in X$,

$$K(x,x') = \left\langle \Phi(x'), \Phi(x) \right\rangle = \left\langle K(\cdot,x), K(\cdot,x') \right\rangle.$$
(2)

Hence, by the Cauchy-Schwarz inequality, we get that

$$|K(x,x')|^{2} = |\langle K(\cdot,x), K(\cdot,x') \rangle|^{2}$$

$$\leq ||K(\cdot,x)||_{\mathscr{H}}^{2} \cdot ||K(\cdot,x')||_{\mathscr{H}}^{2}$$

$$= K(x,x) \cdot K(x',x').$$

Using properties of the supremum, along with the continuity and monotone increasing nature of the square root function on $[0,\infty)$, we get that

$$\begin{split} \|K\|_b &:= \sup_{\substack{(x,x') \in X \times X}} |K(x,x')| \\ &\leq \sup_{\substack{x,x' \in X}} \sqrt{K(x,x)} \cdot \sqrt{K(x',x')} \\ &= \sup_{x \in X} \sqrt{K(x,x)} \cdot \sup_{\substack{x' \in X}} \sqrt{K(x',x')} \\ &= \sup_{\substack{x \in X}} K(x,x). \end{split}$$

On the other hand, we have that

$$\sup_{(x,x')\in X\times X}|K(x,x')|\geq \sup_{(x,x)\in X\times X}K(x,x)$$

since $\{(x,x)|x \in X\} \subseteq \{(x,x')|x,x' \in X\}$ by choosing x' = x. Thus, equality holds and we get that *K* is bounded iff

$$\|K\|_b := \sup_{(x,x')\in X\times X} |K(x,x')| = \sup_{x\in X} K(x,x) < \infty.$$

Again, by the monotone continuity of the square root and the fact $K(x,x) \ge 0$, this is equivalent to boundedness with respect to our more useful norm definition from [2, Chapter 4.3]. Thus, *K* is bounded iff $||K||_b < \infty$ iff

$$\|K\|_{\infty} := \sup_{x \in X} \sqrt{K(x,x)} < \infty$$

Thus, we conclude that either of the norms, $\|.\|_b$ and $\|.\|_{\infty}$, can be used to determine boundedness of *K*.

Next, we relate the boundedness of K to the boundedness of its *feature map* Φ .

Lemma 2. Let $K : X \times X \to \mathbb{K}$ be a kernel on a reproducing kernel Hilbert space \mathscr{H} with feature space \mathscr{H}_0 and feature map $\Phi : X \to \mathscr{H}_0$. Then K is bounded iff Φ is bounded.

Proof. Since $\Phi : X \to \mathscr{H}_0$ is a feature map for *K*, an application of (2) gives that

$$\|\Phi(x)\|_{\mathscr{H}_0}^2 = \langle \Phi(x), \Phi(x) \rangle_{\mathscr{H}_0} = \langle K(\cdot, x), K(\cdot, x) \rangle_{\mathscr{H}} = K(x, x).$$

Taking the supremum over *X* on both sides gives $\|\Phi\|_b^2 = \|K\|_{\infty}^2$. Thus, $\|\Phi\|_b^2 < \infty$ iff $\|K\|_{\infty}^2 < \infty$ which is our desired characterization of boundedness.

Now we are able to characterize the boundedness of the reproducing kernel in terms of the feature space elements $f \in \mathcal{H}$.

Lemma 3. Let $K : X \times X \to \mathbb{K}$ be a kernel on X with a reproducing kernel Hilbert space \mathscr{H} . Then K is bounded iff every $f \in \mathscr{H}$ is bounded (as a function).

Moreover, in this case the induction map (id) : $\mathscr{H} \to l^{\infty}(X)$ is continuous, with

$$\|(id): \mathscr{H} \to l^{\infty}(X)\| = \|K\|_{\infty}.$$

Proof. (\implies): Assume *K* is bounded. By virtue of the properties of RKHS's for \mathscr{H} and the Cauchy-Schwarz inequality, we have for all $x \in X$ and $f \in \mathscr{H}$,

$$|f(x)|^2 = |\langle f, K(\cdot, x) \rangle_{\mathscr{H}}|^2 \le ||f||_{\mathscr{H}}^2 K(x, x).$$

Taking the supremum over X gives

$$\|f\|_b \le \|f\|_{\mathscr{H}} \|K\|_{\infty}.$$

Since *K* is assumed bounded and $f \in \mathcal{H} \implies ||f||_{\mathcal{H}} < \infty$, then we have $||f||_b < \infty$, showing boundedness.

This also shows that $(id) : \mathscr{H} \to l^{\infty}(X)$ is well-defined, and that

$$\|(id): \mathscr{H} \to l^{\infty}(X)\| \le \|K\|_{\infty}.$$
(3)

(\Leftarrow): Conversely, if every $f \in \mathcal{H}$ is bounded, we get that the inclusion (*id*) : $\mathcal{H} \to l^{\infty}(X)$ is well-defined. We also observe that (*id*) is clearly a linear map since

$$(id)(\alpha f + g)(x) = (\alpha f + g)(x) = \alpha f(x) + g(x) = \alpha (id)(f)(x) + (id)(g)(x)$$

for any $\alpha \in \mathbb{K}$ and $f, g \in \mathcal{H}$.

We will use the closed graph theorem to prove that (id) is bounded. To show that (id) has a closed graph, let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in \mathcal{H} such that

Scribes: Malcolm Davies and Ahmed Abouserie

$$\lim_{n \to \infty} \|f_n - f\|_{\mathscr{H}} = 0 \tag{4}$$

and
$$\lim_{n \to \infty} \|id(f_n) - g\|_{\infty} = \lim_{n \to \infty} \|f_n - g\|_{\infty} = 0$$
(5)

for some $f \in \mathscr{H}$ and $g \in l^{\infty}(X)$. Then, we have that for any $x \in X$,

$$\begin{split} \lim_{n \to \infty} |f_n(x) - f(x)|^2 &= \lim_{n \to \infty} |\langle f_n, K(\cdot, x) \rangle_{\mathscr{H}} - \langle f, K(\cdot, x) \rangle_{\mathscr{H}} |^2 & \text{(reproducing kernel property)} \\ &= \lim_{n \to \infty} |\langle f_n - f, K(\cdot, x) \rangle_{\mathscr{H}} |^2 & \text{(inner product property)} \\ &\leq \lim_{n \to \infty} \|f_n - f\|_{\mathscr{H}}^2 \|K(\cdot, x)\|_{\mathscr{H}}^2 & \text{(Cauchy-Schwarz inequality)} \\ &= 0. & \text{(by (5))} \end{split}$$

This relation holds iff f_n converges to f pointwise as $n \to \infty$. Also, since $|f_n(x) - g(x)| \le ||f_n - g||_{\infty}$ for any $x \in X$, line (5) implies that $\lim_{n\to\infty} |f_n(x) - g(x)| = 0$ for every $x \in X$, which means that f(x) = g(x) for all $x \in X$ iff f = (id)(f) = g. Therefore, we conclude that $(id) : \mathscr{H} \to l^{\infty}(X)$ has a closed graph and hence is bounded. Since (id) is linear, this means that it is also continuous.

Finally, for any $x \in X$ we have that

$$\begin{split} |K(x,x)| &\leq \|K(\cdot,x)\|_{\infty} \leq \|(id): \mathscr{H} \to l^{\infty}(X)\| \|K(\cdot,x)\|_{\mathscr{H}} \\ &= \|(id): \mathscr{H} \to l^{\infty}(X)\| \sqrt{(K(x,x))} \end{split}$$

which implies that $\sqrt{K(x,x)} \le ||(id) : \mathscr{H} \to l^{\infty}(X)||$. Since this holds for every $x \in X$, taking the sup over X on both sides gives that

$$\|K\|_{\infty} \le \|(id): \mathscr{H} \to l^{\infty}(X)\|.$$
(6)

By Lemma 1, this shows that *K* is bounded. In addition, inequalities (3) and (6) give that $||K||_{\infty} \leq ||(id) : \mathcal{H} \to l^{\infty}(X)||$. \Box

1.2 Measurability

Here, we focus on kernels over a measurable space, (X, μ) . We start with the following characterization of the measurability of a kernel *K* in terms of the measurability of the functions in the associated RKHS.

Lemma 4. Let (X, μ) be a measurable space and K be a kernel on X with reproducing kernel Hilbert space \mathcal{H} . Every $f \in \mathcal{H}$ is μ -measurable iff the restricted kernel function $K(\cdot, x') : X \to \mathbb{R}$ is μ -measurable for all $x' \in X$.

Reproducing Kernel Hilbert Spaces - Part II

If, in addition, we know that the *feature space* \mathcal{H} is separable, then we are able to relate the measurability of $K(\cdot, x)$ to that of its *feature map* Φ . The next lemma gives sufficient conditions for the measurability of the Φ and the measurability of the reproducing kernel.

Lemma 5. Let (X, μ) be a measurable space and K be a kernel on X with reproducing kernel Hilbert space \mathscr{H} such that the restricted kernel function $K(\cdot, x') : X \to \mathbb{R}$ is μ -measurable for all $x' \in X$. If \mathscr{H} is separable, then

(i) the canonical feature map $\Phi : X \to \mathcal{H}$ is μ -measurable, (ii) the full kernel $K : X \times X \to \mathbb{R}$ is $\mu \times \mu$ -measurable on the product space $X \times X$.

Proof. (sketch):

1. Consider an element of the dual space of bounded linear functionals $w \in \mathcal{H}'$. By the Riesz representation theorem, there exists $f \in \mathcal{H}$ such that for any $x \in X$

$$w(\Phi(x)) = \langle w, \Phi(x) \rangle_{\mathscr{H}' \mathscr{H}} = \langle f, \Phi(x) \rangle_{\mathscr{H}} = f(x).$$
(7)

Hence, $w(\Phi(\cdot))$ is measurable by the above lemma (4).

2. Recall the statement of Petti's measurability theorem [2, A.5.19]: Let *E* be a Banach space and (Ω, \mathscr{A}) be a measurable space. Then $f : \Omega \to E$ is an *E*-valued measurable function iff the following two conditions are satisfied:

(i) f is weakly measurable (i.e. $\langle x', f \rangle : \Omega \to \mathbb{R}$ is measurable for all $x \in E'$). (ii) $f(\Omega)$ is a separable subset of E

Hence, (7) and the seperability of \mathscr{H} imply that Φ is μ -measurable.

3. The second assertion now follows from $K(x,x') = \langle \Phi(x), \Phi(x') \rangle$ and the fact that the inner product is continuous (Continuity implies measurability on metric or topological spaces). \Box

1.3 Integrability

Finally, we investigate the integrability of measurable kernels, K, over a measurable space, (X, μ) . We start by stating some useful properties of L^p integral operators of kernels.

Theorem 1. Let (X, μ) be a measurable space, μ be a σ -finite measure on X, and \mathcal{H} be a separable RKHS over X with measurable kernel $K : X \times X \to \mathbb{R}$. If there exists $p \in [1, \infty)$ such that

$$\|K\|_{L^p} := \left(\int_X K(x,x)^{p/2} d\mu(x)\right)^{1/p} < \infty,$$
(8)

then the following holds:

- (i) \mathscr{H} consists of $L^p(\mu)$ -integrable functions.
- (ii) The inclusion map (id) : $\mathscr{H} \to L^p(\mu)$ is continuous.
- (iii) The adjoint of the inclusion map exists. It is the operator $S_K : L^{p'} \to \mathcal{H}$ given by

$$S_K g(x) = \int_X K(x, x') g(x') \, d\mu(x')$$
(9)

for $g \in L^{p'}$, $x \in X$, and conjugate exponents $\frac{1}{p} + \frac{1}{p'} = 1$.

Remark: The L^p norm here is not the standard one, rather it takes the L^p norm of the square root of the input *K*. This is analogous to the special ∞ -norm for kernels developed above.

Proof. (i),(ii) Fix $f \in \mathscr{H}$. Then since $||K(\cdot,x)||_{\mathscr{H}} = \sqrt{K(x,x)}$ we have

$$\begin{split} \|f\|_{L^p}^p &= \int_X |f(x)|^p \, d\mu(x) \\ &= \int_X |\langle f, K(\cdot, x) \rangle|^p \, d\mu(x) \\ &\leq \|f\|_{\mathscr{H}}^p \int_X (K(x, x))^{p/2} \, d\mu(x) \\ &= \|f\|_{\mathscr{H}}^p \|K\|_{L^p}^p \end{split}$$

This shows that $f \in L^p(\mu)$ and that $(id) : \mathscr{H} \to L^p(\mu)$ is continuous with

$$\|(id): \mathscr{H} \to L^p(\mu)\| \leq \|K\|_{L^p}.$$

(iii) For $g \in L^{p'}$ we have that

$$\int_{X} |K(x,x')g(x')| d\mu(x') \le \sqrt{K(x,x)} \int_{X} \sqrt{K(x',x')} |g(x')| d\mu(x')$$
(10)

$$\leq \sqrt{K(x,x)} \|K\|_{L^p} \|g\|_{L^{p'}} \tag{11}$$

Here, line (10) follows from the Schwartz inequality and the fact (from the proof of Lemma 1) that $|K(x,x')|^2 \leq K(x,x)K(x',x')$. Line (11) is due to Hölder's inequality. Altogether, this shows the integrability of K(x,x')g(x') and thus the existence (as a number in \mathbb{R}) of $S_Kg(x)$ for all $x \in X$. Finally, we have

$$S_{K}g(x) = \int_{X} \left\langle \Phi(x'), \ \Phi(x) \right\rangle_{\mathscr{H}} g(x') d\mu(x')$$
$$= \left\langle \int_{X} g(x') \Phi(x') d\mu(x'), \ \Phi(x) \right\rangle_{\mathscr{H}}$$

This shows that $S_K g := \bar{g} = \int_X g(x') \Phi(x') d\mu(x') \in \mathscr{H}$. \Box

Remark: (Topological properties of \mathcal{H} in relation to the adjoint S_K) Under the conditions of Theorem 1, using the fact that a bounded linear operator has Reproducing Kernel Hilbert Spaces - Part II

a dense image if and only if its adjoint is injective, one can also derive the following properties for the feature space \mathcal{H} in terms of the adjoint map S_K

- 1. \mathscr{H} is dense in L^p iff the adjoint operator $S_K : L^{p'} \to \mathscr{H}$ is injective. 2. The adjoint $S_K : L^{p'} \to \mathscr{H}$ has a dense image $S_K(L^{p'})$ iff the inclusion (id): $\mathscr{H} \to L^p$ is injective.

We conclude by stating some special properties of L^2 integral kernel operators over a measurable space (X, μ) for which there exists a σ -finite measure μ .

Theorem 2. Let (X, μ) be a measurable space, μ be a σ -finite measure on X, and \mathscr{H} be a separable RKHS over X with measurable kernel $K: X \times X \to \mathbb{R}$ such that

$$\|K\|_{L^2} = \left(\int_X K(x,x) \, d\mu(x)\right)^{1/2} < \infty,\tag{12}$$

then

(i) the Hilbert-Schmidt (adjoint) operator $S_K : L^2 \to \mathscr{H}$ given by

$$S_K g(x) = \int_X K(x, x') g(x') d\mu(x')$$

exists for $g \in L^2$, $x \in X$.

(ii) the Hilbert-Schmidt (adjoint) operator has

$$|S_K||_{HS} = ||K||_{L^2} \tag{13}$$

where we define $\|S\|_{HS}^2 := \sum_i \|Se_i\|_{L^2}^2$ for general operator S and orthonormal basis $\{e_i\} \subseteq \mathscr{H}$.

(iii) The integral operator $T_K = S_K^* S_K : L^2(\mu) \to L^2(\mu)$ is compact, positive, and self-adjoint.

Proof. (i) Recall from the proof of Theorem 1 that for $f \in \mathcal{H}$, $g \in L^2$, and (id): $\mathscr{H} \to L^2$,

$$\begin{split} \langle g, (id)f \rangle_{L^2} &= \int_X g(x) \left\langle f, K(\cdot, x) \right\rangle_{\mathscr{H}} d\mu \\ &= \left\langle f, \int_X g(x) K(\cdot, x) d\mu(x) \right\rangle_{\mathscr{H}} \\ &= \left\langle f, S_K g \right\rangle_{\mathscr{H}} \end{split}$$

which gives that $\bar{g} := S_K g \in \mathscr{H}$.

(ii) Let $\{e_i\} \subseteq \mathscr{H}$ be an orthonormal basis. Then

Scribes: Malcolm Davies and Ahmed Abouserie

$$\begin{split} \|S_K\|_{HS}^2 &= \sum_{i=1}^{\infty} \|S_K^* e_i\|_{L^2}^2 \\ &= \int_X \sum_{i=1}^{\infty} |S_K^* e_i(x)|^2 \, d\mu(x) \\ &= \int_X \sum_{i=1}^{\infty} |e_i(x)|^2 \, d\mu(x) \\ &\stackrel{*}{=} \int_X K(x, x)^2 \, d\mu(x) \\ &= \|K\|_{L^2}^2 \end{split}$$

where the equality (*) follows from a previous result that $K(x,x') = \sum_{j} e_i(x)\overline{e_i(x')}$. Since $\|S_K^*\|_{HS}^2 = \|K\|_{L^2} < \infty$, this shows S_K^* is *HS*-norm bounded, and $S_K^* \in HS$. Consequently, its adjoint S_K is Hilbert-Schmidt as well.

(iii) The properties of the integral operator T_K follow directly from its definition and the properties of S_k . \Box

Note: Here, we have that $S_K^* = (id) : \mathscr{H} \to L^2(\mu)$, and so $T_K := S_K^* S_K = (id) S_K^*$. However, it does *not* follow that $T_K = S_K$. The critical point is that $L^2(\mu)$ is not a space of functions, but rather a space of equivalence classes of functions. Hence, $S_K g(x) \in \mathscr{H}$ is defined for $x \in X$ but $T_K f(x) \in L^2(\mu)$ is not.

References

- 1. Gerald B. Folland. Real Analysis: Modern Techniques and Their Methods. Wiley, 1999.
- Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business Media, 2008.