
Reproducing Kernel Hilbert Spaces - Part III

Scribes: Manoj Subedi and Jayson Cortez

1 Properties of Reproducing Kernel Hilbert Spaces

In this section, we study additional properties of functions in a RKHS that are in-
herited from the reproducing kernel function.

1.1 Continuity

In this section we examine the continuity properties of a kernel k.
We define a (pseudo)-metric in terms of k and use this to characterize continuity.

Definition 1. Let X be a topological vector space. A kernel k on X is separately
continuous if k(·,x) : X→ R is continuous for all x ∈ X.

Lemma 1. Let X be a topological space and k a kernel on X with reproducing
kernel Hilbert space H. Then k is bounded and separately continuous iff every f ∈
H is bounded and continuous. In this case, the inclusion map id : H→ Cb(X) is
continuous and

‖id : H→Cb(X)‖= ‖k‖∞.

Definition 2. Let k be a kernel on X with a feature map Φ : X→ H. The kernel
metric is given by;

dk(x,x′) = ‖Φ(x)−Φ(x′)‖H x, x′ ∈ X.

We remark that dk is a pseudo-metric in general (dk(x,x′) = 0 for not imply that
x = x′ in general), and is a metric if Φ is injective. Furthermore, we have

dk(x,x′) =
√

k(x,x)−2k(x,x)+ k(x′,x′) (1)

which shows that the definition of dk is independent of feature map Φ .
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The following lemma shows how the kernel metric can be used to characterize
the continuity of the kernel k.

Lemma 2. Let (X,τ) be a topological vector space and k a kernel on X with feature
space H and feature map Φ . The following are equivalent:

i. k is continuous.
ii. k is separately continuous and x 7→ k(x,x) is continuous.
iii.Φ is continuous.
iv. The map id : (X,τ)→ (X,dk) is continuous.

Proof. (i) =⇒ (ii). Trivial.
(ii) =⇒ (iv). By equation (1) and the assumption, we see that dk(·,x) : (X,τ)→ R
is continuous for every x ∈ X. Consequently, {x′ ∈ X : dk(x′,x) < ε} is open with
respect to τ and therefore id : (X,τ)→ (X,dk) is continuous.
(iv) =⇒ (iii). This follows from the fact that Φ : (X,dk)→H is continuous.
(iii) =⇒ (i). Fix x1, x′1 ∈ X and x2, x′2 ∈ X. Then we have∣∣k(x1,x′1)− k(x2,x′2)

∣∣≤ ∣∣〈Φ(x′1),Φ(x1)−Φ(x2)〉
∣∣+ ∣∣〈Φ(x′1)−Φ(x′2),Φ(x2)〉

∣∣
≤ ‖Φ(x′1)‖ · ‖Φ(x1)−Φ(x2)‖+‖Φ(x2)‖ · ‖Φ(x′1)−Φ(x′2)‖.

From this we conclude that k is continuous.

1.2 Compactness

We have seen above that a RKHS over X is continuously contained in l∞ if it has a
bounded kernel. The following proposition provides an additional condition so that
this inclusion is compact.

Proposition 1. Let k be a kernel on a space X with RKHS H and canonical feature
map Φ : X→H. If Φ(X) is compact in H then the inclusion map given by

id : H→ l∞(X)

is also compact.

Proof. Since Φ(X) is compact, then k is bounded and the space (X,dk) is compact
with respect to the kernel metric dk. Let C(X,dk) be the space of functions f :X→R
that are continuous with respect to dk. For x, x′ ∈ X and f ∈H we have∣∣ f (x)− f (x′)

∣∣= ∣∣〈 f ,Φ(x)−Φ(x′)〉
∣∣≤ ‖ f‖H ·dk(x,x′),

showing that f is continuous on (X,dk). It follows that the unit ball BH ⊂ H
is equicontinuous and bounded. By Arzela-Ascoli Theorem, BH is compact in
C(X,dk) and, hence, in l∞(X) since C(X,dk) ⊂ l∞(X). This shows that id : H→
l∞(X) is compact.
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Next, we provide a sufficient condition for the separability of a RKHS H.

Proposition 2. Let X be a separable topological space and k a continuous kernel
on X. Then the RKHS H of k is separable.

Proof. By Proposition 1, the canonical feature map Φ : X → H is continuous,
thereby implying that Φ(X) is separable. It follows that vector space

Hpre := {
n

∑
i=1

αi k(·,xi) : n ∈ N,α1, ...,αn ∈ k x1, ...,xn ∈ X} (2)

is also separable. We observed in the proof of a previous theorem that Hpre is dense
in H. The separability of H follows by completion.

2 Mercer’s Theorem

This theorem shows the existence of a series representation for continuous kernels
that are defined on a compact domain.

Theorem 1. (Mercer’s) Let X be compact metric space and k : X×X→ R be con-
tinuous. Let µ be a finite Borel measure with supp(µ) = X. Then there exists a
countable orthonormal sequence (ei)i∈I ⊂ H and a family (λi)i∈I ⊂ R converging
to 0 such that

k(x,x′) = ∑
i∈I

λi ei(x)ei(x′) x,x′ ∈ X (3)

with absolute and uniform convergence. Here we assume that

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . .

Remarks:

• Equation 3 implies that Φ : X 7→ `2 given by Φ(x) = (
√

λiei(x))i∈I ,x ∈ X, is a
feature map. In fact k(x,x′) = 〈Φ(x′),Φ(x)〉.

• With the assumptions of Mercer’s theorem, if (ai)i∈I ⊂ `2(I) and x ∈ X , J ⊂ I,
then

∑
i∈J

∣∣∣ai
√

λiei(x)
∣∣∣≤(∑

i∈J
a2

i

)1/2(
∑
i∈J

λie2
i (x)

)1/2

= ‖(ai)‖`2(I) ·
√

k(x,x).

Theorem 2. (Mercer’s Representation theorem for RKHS) With the assumptions
from previous theorem, let

H :=

{
∑
i∈I

ai
√

λi ei : (ai) ∈ `2(I)

}
.
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For
f = ∑ai

√
λiei ∈ H, g = ∑bi

√
λiei ∈ H

set
〈 f ,g〉H = ∑

i∈I
aibi.

Then H equipped with 〈·, ·〉H is the RKHS of the kernel of k. Furthermore, T 1/2
k :

L2(µ)→ H given by
T 1/2

k f = ∑
i∈I

λ
1/2
i 〈 f ,ei〉ei

is an isometric isomorphism.

Proof. It is straightforward to verify that H is a Hilbert Space, i.e., H is a complete
inner product space under the norm 〈·, ·〉H . For x∈X, by Mercer’s Theorem we have
that

k(·,x) = ∑
i∈I

√
λiei(x)

√
λiei(·)

showing that k(·,x) ∈ H. For f = ∑
i∈I

ai
√

λiei ∈ H, we have

〈 f ,k(·,x)〉H = ∑
i∈I

ai
√

λiei(x) = f (x), x ∈ X

showing that k is the reproducing kernel of k.
Let us now focus on T 1/2

k . Fix f ∈ L2(µ). Since (ei)i∈I is an orthonormal basis of
L2(µ), we can write f = ∑

i∈I
〈 f ,ei〉L2(µ) ei. Hence, by Parseval’s formula,

‖ f‖2
L2(µ) = ∑

i∈I
|〈 f ,ei〉|2 ,

showing that (〈 f ,ei〉)i∈I ⊂ `2(I). It follows that

T 1/2
k f = ∑

i∈I
〈 f ,ei〉

√
λ i ei ∈ H.

Moreover,
‖T 1/2

k f‖2 = ∑
i∈I
|〈 f ,ei〉|2 = ‖ f‖2

L2(µ),

implying that T 1/2
k is an isometry on H and hence injective. To show that T 1/2

k is
surjective, fix f ∈ H. By the definition of H there is a sequence (ai)i∈I ⊂ `2(I) such
that f (x) =∑

i∈I
ai
√

λi ei(x). We obviously have that g := ∑i∈I aiei ∈ L2(µ) and, thus,

ai = 〈g,ei〉L2 . Thus,

T 1/2
k g(x) = ∑

i∈I
〈g,ei〉L2

√
λi ei(x) = ∑

i∈I
ai
√

λi ei(x) = f (x),
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proving that T 1/2
k is surjective.

3 Universal kernels

We have seen that SVMs are based on minimization problems over RKHS. We will
eventually see that the ”size” of the RKHS is a critical issue on the generalization
ability of an SVM since we want a solution space large enough to give accurate
solutions, yet not too large to avoid over-fitting.

Definition 3. A continuous kernel k on a compact metric space X is universal if the
RKHS H of k is dense in C(X), i.e., for every g ∈C(X) and all ε > 0, there exists
an f ∈H such that

‖ f −g‖∞ ≤ ε.

Definition 4. Let k be a kernel on a metric space X with RKHS H. We say that k
separates the disjoint sets A, B⊂ X, if there exists an f ∈H such that f (x)> 0 for
all x ∈ A, and f (x)< 0 for all x ∈ B. We say that k separates all finite (or compact)
sets if k separates all finite (or compact) disjoints sets A, B⊂ X.

Proposition 3. Let X be a compact metric space and k a universal kernel on X.
Then k separates all compact sets in X.

Proof. Let A, B⊂ X be disjoint and compact. For any x ∈ X, set

g(x) =
d(x,B)

d(x,A)+d(x,B)
− d(x,A)

d(x,A)+d(x,B)
(4)

where d(x,C) = inf
x′∈C

d(x,x′) , x ∈ X and C ⊂ X. If x ∈ A then g(x) = 1, and if x ∈ B

then g(x) = −1. Note that g is continuous by the continuity of the metric d. Let H
be the RKHS of k. Since k is universal, we can find f ∈H such that ‖ f −g‖∞ < 1/2
implying that f (x)> 1/2 if x ∈ A, and f (x)< 1/2 if x ∈ B.

Geometrical Interpretation:
Assume that there exists a universal kernel k on H0, with the feature map Φ0 :
X→ H0. Let X be a compact metric space and {x1, ...,xn} ⊂ X. By proposition
3, for every choice of labels {y1, ...,yn} ⊂ {−1,1} we can find f ∈ H satisfying
yi f (xi)> 0 ∀i = 1, ...n. This f can be represented by f = 〈w,Φ0(·)〉 for a suitable
w ∈H0. As a result, the mapped training points 〈Φ0(x1),y1〉, ...,〈Φ0(xn),yn〉 can be
correctly separated in H0 by the hyperplane defined by w.

Theorem 3. (Test for universality) Let X be a compact metric space and k a continu-
ous kernel on X with the property that k(x,x)> 0 for all x∈X. Suppose that we have
an injective feature map Φ : X→ `2 and denote Φ(x) = (φ1(x),φ2(x), ...,φk(x), ...),
x ∈ X. If A = span{φn : n ∈ N} is an algebra, then k is universal.
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We first recall the Stone-Weierstrass Theorem:
Let (X,τ) be a compact metric space and A ⊂C(X) be an algebra. Then A is

dense in C(X) if both A does not vanish, i.e., for all x ∈ X, there exists an f ∈A
with f (x) 6= 0, and A separates points, i.e., for all x,y ∈ X with x 6= y, there exists
an f ∈A with f (x) 6= f (y).

Proof. We first observe that the algebra A = span{φn : n ∈ N} does not vanish
since ‖(φn(x))‖2

`2 = k(x,x)> 0 for all x∈X. Moreover, k is continuous and, thus, by
Lemma 2, every φn : X→ R is continuous. This shows that A ⊂C(X). Moreover,
the injectivity of Φ implies that A separates points and, thus, Stone-Weierstass
Theorem implies that A is dense in C(X). Now fix a g ∈C(X) and an ε > 0. Then
there exists a function f ∈A of the form

f =
m

∑
j=1

α jφn j with ‖ f −g‖∞ ≤ ε.

For n ∈ N, we define wn := α j if there is an index j with n j = n and wn := 0 other-
wise. This yields w := (wn) ∈ `2 and f = 〈w,Φ(·)〉`2 , and thus k is universal.

Examples of universal Kernels

• Polynomial: k(x,x′) = f (〈x,x′〉) where f (t) = ∑
∞
k=0 aktk, ak > 0.

• Exponential: k(x,x′) = exp(〈x,x′)〉.
• Gaussian: kγ(x,x′) = exp(−γ2‖x− x′‖2

L)
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