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1 Introduction

In this section, we discuss the properties of loss functions and their risks following
the material from [1, Ch.2]. To motivate this discussion, let us recall that the goal of
supervised learning methods is to find a solution function f ∗ that (approximately)
minimizes the risk RL,P( f )

R∗L,P( f ) = inf
f :X→R

RL,P( f ). (1)

In practice, the probability P is unknown, so we examine the empirical risk

RL,D =
1
n

n

∑
i=1

L(yi, f (xi)), (2)

where D is the set of training samples D = {(xi,yi) : i = 1, ...,n}.
In general, equation (1) may have non-unique solution and, in any case, com-

puting the solution may be unfeasible. For example, the 0/1 loss function used in
binary classification is non-convex and, consequently, solving equation 1 is NP-hard
as Hoffgen et al. (1995) showed.

Let us explain how SVMs make the optimization problem computationally feasi-
ble. The first step is to replace the 0/1 classification loss by a convex surrogate. The
most common choice in this regard is the hinge loss, which is defined by

Lhinge(y, t) := max{0,1− yt} , y ∈ {−1,+1} , t ∈ R

To show that hinge loss is a convex surrogate of the 0/1 classification, we make
some observations below.

Explanation. Let us consider the classical SVM setting where input data x1, . . .xn ∈
X are mapped into a possibly infinite dimensional Hilbert space H0 by a feature map

1



2 Scribes: Heng Zhao and Yaofeng Su

Φ : X → H0. Thea soft-margin SVM problem requires to solve the following con-
strained minimization problem:

min
w,b,ξ

1
2 〈w,w〉+C ∑

n
i=1 ξi

s.t. yi(〈w,Φ(xi)〉+b)≥ 1−ξi,
(3)

where w ∈H0,b ∈R,ξi ≥ 0, i = 1, ...,n. We can write the constraint inequality as

ξi ≥ 1− yi(〈w,Φ(xi)〉+b), ξi ≥ 0

which is equivalent to

ξi =

{
0, i f yi(〈w,Φ(xi)〉+b)> 1

1− yi(〈w,Φ(xi)〉+b) i f yi(〈w,Φ(xi)〉+b)≤ 1 (4)

and this, in turn, is equivalent to

ξi = max{0,1− yi(〈w,Φ(xi)〉+b)} (5)
= Lhinge(yi, fw,b(xi)) (6)

where fw,b(·) = 〈w,Φ(·)〉+b. Thus, the soft-margin SVM problem can be state as:

inf
f∈H

λ ‖ f‖2
H +RL,D( f )

where
‖ f‖H = inf

{
‖w‖H0

: w ∈ H0, fw,b(·) = 〈w,Φ(·)〉+b
}

RL,D( f ) =
1
N

N

∑
i=1

Lhinge(yi, fw,b(xi)).

Here the regularization term λ ‖ f‖2
H penalizes solution functions with a large RKHS

norm.
Remark. Due to the convexity of the hinge loss function, the minimization prob-

lem is convex hence it has unique solution.
In the next section, we analyze in details the basic properties of a loss function.

2 Loss Functions and Risks

2.1 Loss Functions

Definition 1. Let (X ,R) be a measurable space and Y ⊂R be a closed subset. Then
a function f : X ×Y ×R→ [0,∞) is called a loss function if it is a measurable
function.
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In the following, we will interpret L(x,y, f (x)) as the cost or loss of predicting
the value y using f (x) when x is observed, i.e., the smaller the value L(x,y, f (x)) is,
the better f (x) predicts y with respect to the loss L. From this, it is clear that constant
loss functions, such as L := 0, are rather meaningless for our purposes, since they
do not distinguish between good and bad predictions.

Let us now recall that our major goal is to have a small average loss for future
unseen observations (x,y). This leads to the following definition.

Definition 2. Let L : X ×Y ×R→ [0,∞) be a loss function and P be a probability
measure on X×Y . Then, for a measurable function f : X →R, the L-risk is defined
by

RL,P =
∫

X×Y
L(x,y, f (x))dP(x,y) =

∫
X

∫
Y

L(x,y, f (x))dP(y|x)dPX (x),

where P(y|x) is a conditional probability.
Let D = {(xi,yi) : i = 1, . . .n} be i.i.d. points in X×Y . The empirical risk is

RL,D =
1
n

n

∑
i=1

L(xi,yi, f (xi)).

By the law of large number, RL,D( f ) gets closer to RL,P( f ) as n is large. In this
sense, the empirical risk can be seen as an approximation of L-risk of f (for f a
fixed funstion).

Now recall that L(x,y, f (x)) was interpreted as a cost that we wish to keep small
and, hence, it is natural to look for functions f whose risks are as small as possi-
ble. Since the smallest possible risk plays an important role, we give the follwoing
definition.

Definition 3. Let L : X ×Y ×R→ [0,∞) be a loss function and P be a probability
measure on X×Y . Then the minimal L-risk

R∗L,P := inf{RL,P( f )| f : X → R measurable}

is called the Bayes risk with respect to P and L. In addition, a measurable f ∗L,P : X→
R with RL,P( f ∗L,P) = R∗L,P is called a Bayes decision function.

Example 1. (Standard binary classification). Let Y := {−1,1} and P be an unknown
data-generating distribution on X ×Y . Then the goal of binary classification is to
predict y for a pair (x,y) ∈ X ×Y when x is observed. The most common loss func-
tion describing this learning goal is the classification loss Lclass : Y ×R→ [0,∞),
which is defined by

Lclass(y, t) := 1(−∞,0](y sgn(t)), y ∈ Y, t ∈ R

or, equivalently,

Lclass : Y ×R→ [0,∞) :=
{

0, i f y = sgn(t)
1, i f y 6= sgn(t) (7)
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Note that Lclass only penalizes predictions t whose signs disagree with that of
y, so it indeed reflects our informal learning goal. Now, for a measurable function
f : X → R, an elementary calculation shows

RLclass,P( f ) =
∫

X

∫
Y

Lclass(y, f (x))dP(y|x)dPX (x) (8)

=
∫

X
η(x)1(−∞,0)( f (x))+(1−η(x))1(0,∞)( f (x))dPX (x) (9)

= P({(x,y) ∈ X×Y : sign f (x) 6= y} (10)

where η(x) := P(y = 1|x),x ∈ X . From this we conclude that f is a Bayes decision
function if and only if (2η(x)−1)sgn f (x)≥ 0 for PX -almost all x ∈ X . In addition,
this consideration yields

R∗Lclass,P =
∫

X
min{η ,1−η}dPX

Example 2. (Weighted binary classification). Let Y := {−1,1} and α ∈ (0,1). Then
the α-weighted classification loss Lα−class : Y ×R→ [0,∞) is defined by

Lα−class(y, t) :=

1−α if y = 1 and t < 0
α if y =−1 and t ≥ 0
0 otherwise

(11)

for all y ∈ Y, t ∈ R. Obviously we have 2L 1
2−class = Lclass, i.e., the standard binary

classification scenario is a special case of the general weighted classification sce-
nario. Given a probability measure P on X ×Y and a measurable f : X → R, the
Lα−class-risk can be computed by

RLα−class,P( f ) = (1−α)
∫

f<0
ηdPX +α

∫
f≥0

(1−η)dPX

where η(x) := P(y = 1|x), x ∈ X . From this we easily conclude that f is a Bayes
decision function if and only if (η(x)−α)sgn f (x) ≥ 0 for PX -almost all x ∈ X .
Finally, the Bayes Lα−class-risk is

R∗Lα−class,P =
∫

X
min{(1−α)η ,α(1−η)} dPX

In the two examples above the goal was to predict labels y from the set {−1,1}.
In the next example, we wish to predict general real-valued labels.

Example 3. (Least squares regression). The informal goal in regression is to predict
predict the label y ∈ Y = R of a pair (x,y) drawn from an unknown probability
measure P on X ×Y if only x is observed. The most common way to formalize this
goal is based on the least square loss LLS : Y ×R→ [0,∞) defined by

LLS(y, t) := (y− t)2, y ∈ Y, t ∈ R. (12)
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In other words, the least squares loss penalizes the discrepancy between y and t
quadratically. Obviously, for a measurable function f : X → R, the LLS-risk is

RLLS,P( f ) =
∫

X

∫
Y
(y− f (x))2 dP(y|x)dPX (x).

By minimizing the inner integral with respect to f (x), we then see that f is a
Bayes decision function if and only if f (x) almost surely equals the expected Y -
value in x, i.e., if and only if

f (x) = EP(Y |x) :=
∫

Y
ydP(y|x) (13)

for PX -almost all x ∈ X . Moreover, plugging x 7→ EP(Y |x) into RLLS,P(·) shows that
the Bayes LLS-risk is the average conditional Y -variance, i.e.,

R∗LLS,P =
∫

X
EP(Y 2|x)− (EP(Y |x))2 dPX (x).

In all examples above we assumed that L(x,y, f (x)) = L(y, f (x)), with no depen-
dence on X directly. This setting is part of a more general situation.

Definition 4. A function L : Y ×R→ [0,∞) is called a supervised loss function if it
is measurable. A function L : X×R→ [0,∞) is called an unsupervised loss function
if it is measurable.

In case L is an unsupervised loss function, the risk has the form

RL,P( f ) :=
∫

X
L(x, f (x))dPX (x)

and it is independent of the supervisor P(·|x) that generates the labels.

Example 4. (Density distribution)
Let µ be a known probability measure on X , g : X → [0,∞) be an unknown

density w.r.t. µ . The goal is to estimate g. In this case, a possible choice is the
unsupervised loss Lq : X×R→ [0,∞),q > 0 given by

Lq(X , t) = |g(x)− t|q.

Let PX = µ , then

RLq,p( f ) =
∫

X
|g(x)− f (x)|qdµ(x)

where f is any measurable function on X . Clearly, R∗Lq,p = 0 if f ∗ = g modulo sets
of µ-measure zero.
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2.2 Properties of loss functions and their risks

Definition 5. A loss L : X×Y×R→ [0,∞) is strictly convex if L(x,y, ·) : R→ [0,∞)
is strictly convex for all x ∈ X ,y ∈ Y . L is continuous if L(x,y, ·) : R→ [0,∞) is
continuous for all x ∈ X ,y ∈ Y .

If L is a strictly convex loss then it is easy to see that also the L-risk is strictly
convex. However, the continuity of the loss does not imply the continuity of the
corresponding risk.

Proposition 1 (semi-continuous of Risk). If L : X ×Y ×R→ [0,∞) is a strictly
convex loss, P is a distribution on X ×Y and ( fn)n≥1 is a sequence of measur-
able function on X converging to a measurable function f in probability w.r.t. the
marginal distribution PX , then

RL,p( f )≤ liminf
n→∞

RL,p( fn)

.

Before proving this proposition, we recall some definitions. Given a probability
space (X ,σ ,P), a sequence ( fn)n≥1 of measurable functions fn : X → R converge
to a measurable function f : X →R in probability if for any ε > 0,δ > 0, there is N
s.t. for any n≥ N,

P({x ∈ X : | fn(x)− f (x)| ≥ ε})< δ .

We say that ( fn) converges to f P-almost surely if

fn(x)→ f (x) for P-almost all x ∈ X .

We have the following properties:

• P-almost sure convergence =⇒ converge in probability.
• Convergence in probability =⇒ there is ( fnk)k≥1 ⊂ ( fn)n≥1 that converges P-

almost surely.

We can now prove the proposition.

Proof. Since ( fn)n≥1 converges in probability to f , then there exists a subsequence
( fnk)k≥1 ⊂ ( fn)n≥1 that converges to f almost PX -almost surely. By the continuity
of L, we have that

lim
k→∞

L(x,y, fnk(x)) = L(x,y, f (x)) for PX -almost all (x,y) ∈ X×Y.

By Fatou’s Lemma,

RL,P( f ) =
∫

X×Y
lim
k→∞

L(x,y, fnk(x))dP(x,y)

≤ liminf
k→∞

L(x,y, fnk(x))dP(x,y) = liminf
n→∞

RL,p( fn).



Loss functions and their risks 7

Remark 1. It is clear that if there is an integrable majoranof t L(·, ·, fn(·)), then we
can use dominated convergence theorem to show that RL,P( fn)→ RL,P( f ).

Definition 6. A loss L : X ×Y ×R→ (0,∞) is a Nemitski loss if there is a mea-
surable b : X ×Y → [0,∞) and an increasing h : [0,∞) → [0,∞) s.t. L(x,y, t) ≤
b(x,y)+h(|t|) for all (x,y, t) ∈ X×Y ×R.

Definition 7. L is a Nemitski loss of order p ∈ (0,∞) if there is c > 0 s.t.

L(x,y, t)≤ b(x,y)+ c|t|p for all (x,y, t) ∈ X×Y ×P.

If, in addition, P is a distribution on X ×Y and b is P integrable, then L is a P-
integrable Nemitski loss.

Remark 2. If L is a P-integrable Nemitski loss and f ∈ L∞(PX ), then RL,P(F) < ∞

and R∗L,P < ∞ by continuity of the risk.

Proposition 2. Let P be a distribution on X ×Y and L a continuous P-integrable
Nemitski loss.

1. Let ( fn)n≥1 be uniformly bounded measurable functions from X → R such that
|| fn||L∞ ≤ B, where B > 0 is independent of n. If fn→ f PX -almost surely, then

lim
n→∞

RL,P( fn) = RL,P( f ).

2. The map RL,P : L∞(PX )→ [0,∞) is well-defined and continuous.
3. If L is of order p ∈ [1,∞), then RL,P : Lp(PX )→ [0,∞) is well-defined and contin-

uous.

Proof. 1. It is clear that || f ||L∞ ≤ B. By the continuity of L,

lim
n→∞

L(x,y, fn(x)) = L(x,y, f (x)) P-almost surely for all(x,y) ∈ X×Y.

Also,
|L(x,y, fn(x))−L(x,y, f (x))|

≤ 2b(x,y)+h( fn(x))+h(| f (x)|)≤ 2b(x,y)+2h(B).

Since the RHS is P-integrable, by dominated convergence theorem,

|RL,P( fn)−RL,p( f )| ≤
∫
|L(x,y, fn(x))−L(x,y, f (x))|dP(x,y)

which implies
RL,P( fn)→ RL,P( f ).

2. The Nemitski loss assumption and the integrability of b imply that RL,P( f ) is
bounded for any f ∈ L∞(PX ). The continuity follows from part 1.

3. The hypothesis on the loss function directly gives that
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RL,P(F)< ∞, if f ∈ Lp(PX ).

For the continuity, let ( fn)n≥1 ⊂ Lp(PX ) with fn→ f in Lp. Since Lp convergence
implies convergence in probability, so by Proposition 1 we have that

RL,P( f )≤ liminf(RL,P( fn)).

Set L̃(x,y, t) := b(x,y)+ c|t|p−L(x,y, t). This is also a continuous loss. Thus

||b||L1 + c|| f ||pLp −RL,P( f ) = RL̃,P( f )≤ liminf
n→∞

RL̃,P( fn)

= liminf
n→∞

(−RL,P( fn)+ ||b||L1 + || fn||pLp).

Using the continuity of Lp-norm, we conclude

limsup
n→∞

RL,P( fn)≤ RL,P( f ) when fn→ f in Lpnorm.
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