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Question: What properties of a loss function are sufficient to imply the existence
and uniqueness of an SVM solution?

1 Background Defintions, Lemmas, and Theorems

Definition 1. A loss function L : X×Y×R→ [0,∞) is locally Lipschitz (continuous)
if for all a≥ 0 there exists a constant ca such that for t, t ′ ∈ [−a,a],

sup
x∈X ,y∈Y

|L(x,y, t)−L(x,y, t ′)| ≤ ca|t− t ′|.

• The smallest constant ca for which this holds is denoted |`|a,1
• If `1 = supa≥0 |`|a,1 < ∞, then the loss function L is Lipschitz (continu-

ous) with Lipschitz constant `1

Remarks:

1. If Y is finite (as in, for instance, a classification problem) and the supervised loss
function L : Y ×R→ [0,∞) is convex, then L is automatically locally Lipschitz.

2. A locally Lipschitz loss is also a Nemitski loss, since

L(x,y, t)≤ L(x,y,0)+ |L(x,y, t)−L(x,y,0)|
≤ L(x,y,0)+ |`||t|,1|t|.

(1)

In particular, a locally Lipschitz loss is Nemitski p-integrable ⇐⇒ RL,P(·)< ∞.
Furthermore, a Lipschitz loss is also a Nemitski loss of order p = 1.
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Lemma 1. (Lipschitz continuity of Risks) Let L : X×Y ×R→ [0,∞) be locally Lip-
schitz, and let P be a distribution on X×Y .
Then for all B≥ 0 and all f ,g ∈ L∞(PX ) such that ‖ f‖∞,‖g‖∞ ≤ B, we have

|RL,P( f )−RL,P(g)| ≤ ‖`‖B,1‖ f −g‖L1(PX )
.

Proof. Fixing B ≥ 0, ‖ f‖∞, ‖g‖∞ ≤ B gives us that | f (x)|, |g(x)| ≤ B for almost
every x and for almost every x, f (x),g(x) ∈ [−B,B].
L is locally Lipschitz, so this gives that for almost every x,

|L(x,y, f (x))−L(x,y,g(x))| ≤ ‖`‖B,1| f (x)−g(x)|.

Now

|RL,P( f )−RL,P(g)|=
∣∣∣∫

X×Y
L(x,y,( f (x))dP(x,y)−

∫
X×Y

L(x,y,g(x))dP(x,y)
∣∣∣

=
∣∣∣∫

X×Y
(L(x,y, f (x))−L(x,y,g(x)))dP(x,y)

∣∣∣
≤
∫

X×Y
|L(x,y, f (x))−L(x,y,g(x))|dP(x,y)

≤
∫

X×Y
‖`‖B,1| f (x)−g(x)|dP(x,y)

= ‖`‖B,1

∫
X×Y
| f (x)−g(x)|dP(x,y)

= ‖`‖B,1‖ f −g‖L1(PX )
.

Definition 2. A loss function L : X ×Y ×R→ [0,∞) is differentiable if L(x,y, ·) :
R→ [0,∞) is differentiable for all x ∈ X ,y ∈ Y . L′(x,y, t) denotes the derivative of
L(x,y, t), if such a derivative exists.

Proposition 1. Let P be a distribution on X ×Y and L : X ×Y ×R→ [0,∞) be a
differentiable loss function such that both L and |L′| are p-integrable Nemitski losses
(recall that L is always positive). Then the risk RL,P : L∞(PX )→ [0,∞) is Frechét
differentiable and its derivative at f ∈ L∞(PX ) is the bounded linear operator R′L,P :
L∞(PX )→ R given by

R′L,P( f )g =
∫

X×Y
g(x)L′(x,y, f (x))dP(x,y)

for g ∈ L∞(PX ).

Proof. Let f ∈ L∞(PX ) and let ( fn)⊂ L∞(PX ) be a sequence such that fn 6= 0, n≥ 1,
and limn→∞ ‖ fn‖∞ = 0. We assume also that ‖ fn‖∞ ≤ 1 for all n≥ 1.
For x ∈ X ,y ∈ Y we define

Gn(x,y) :=

{∣∣L(x,y, f (x)+ fn(x))−L(x,y, f (x))
fn(x)

−L′(x,y, f (x))
∣∣ fn(x) 6= 0

0 fn(x) = 0
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So then,∣∣∣∣∣RL,P( f + fn)−RL,P( f )−R′L,P( f ) fn

‖ fn‖∞

∣∣∣∣∣
≤
∫

X×Y

1
‖ fn‖∞

∣∣L(x,y, f (x)+ fn(x))−L(x,y, f (x))− fn(x)L′(x,y, f (x))
∣∣dP(x,y)

≤
∫

X×Y
Gn(x,y)dP(x,y)

(2)
Also, by the definitions of Gn and L′(x,y, ·), we have

lim
n→∞

Gn(x,y) = 0 (3)

By the Mean Value Theorem, for x ∈ X ,y∈Y and n≥ 1 with fn(x) 6= 0, there exists
a gn(x,y) such that |gn(x,y)| ∈ [0, | fn(x)|] and

L(x,y, f (x)+ fn(x))−L(x,y, f (x))
fn(x)

= L′(x,y, f (x)+gn(x)).

Since |L′| is a P-integrable Nemitski loss, there also exist b : X×Y → [0,∞),
b ∈ L1(P) and increasing function h : [0,∞)→ [0,∞) such that

|L′(x,y, t)| ≤ b(x,y)+h(t).

This together with ‖ fn‖∞ ≤ 1 for n≥ 1 gives∣∣∣∣∣L(x,y, f (x)+ fn(x))−L(x,y, f (x))
fn(x)

∣∣∣∣∣≤ b(x,y)+h(| f (x)+gn(x,y)|)

≤ b(x,y)+h(‖ f‖∞ +1).

So Gn(x,y) ≤ 2b(x,y)+ 2h(‖ f‖∞ + 1). This together with (2), (3), and Lebesgue
Dominated Convergence theorem gives us the desired expression for R′L,P( f )g.

2 Margin-based losses and Distance-based losses

Motivation: In many problems (most notably SVM), losses are not convex; how-
ever, these non-convex loss functions can often be replaced by appropriate convex
’surrogate losses’.

Definition 3. A supervised loss L : (Y,R)→ [0,∞) is a margin-based loss if there
exists a representing function φ : R→ [0,∞) such that for y ∈ Y, t ∈ R,

L(y, t) = ϕ(yt).
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L is a distance-based loss if there exists a representing function ψ : R→ [0,∞) with
Ψ(0) = 0 such that for y ∈ Y, t ∈ R,

L(y, t) = ψ(y− t).

Proposition 2. Let L be a margin-based loss function with representing function ϕ .
Assume Y = {−1,1} (binary classification problem). Then

1. L is (strictly) convex ⇐⇒ ϕ is (strictly) convex
2. L is continuous ⇐⇒ ϕ is continuous
3. L is (locally) Lipschitz ⇐⇒ ϕ is (locally) Lipschitz
4. If L is convex, then it is both Lipschitz and a p-integrable Nemitski loss.

Examples of Margin-based losses:

• Hinge Loss:
Lhinge(y, t) = max{0,1− yt}

– Convex
– Lipschitz
– Hinge loss is a surrogate (convexification) of classification loss.

• Least Squares Loss:

LLS(y, t) = (y− t)2

= (1− yt)2

(since y =±1)

– Convex
– Locally Lipschitz
– Note that LLS is also an example of a distance-based loss function.

• Truncated Least Squares:

LTr(y, t) = (max{0,(1− yt)})2

– Convex
– Locally Lipschitz

• Similar propositions apply in the case of distance-based losses.

3 Existence and Uniqueness of SVM Solutions

Recall: The SVM problem can be formulated as finding the minimizer of

RL,D,λ ( f ) = λ‖ f‖2
H +RL,D( f ),
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where f ∈ H and D are identically distributed data. By the Law of Large Numbers,
we expect that RL,D,λ ( f ) is close to

RL,P,λ ( f ) = λ‖ f‖H +RL,P( f )

Question: Does a solution exist? If so, can we represent the solution f in a practical
(e.g., computable) form?
We attempt to answer this question with Representer Theorems.

Definition 4. Let L : X×Y ×R→ [0,∞) be a loss, H a Reproducing Kernel Hilbert
Space with measurable kernel k on X , and P a distribution on X ×Y . For λ > 0, a
function fP,λ ,H satisfying

λ‖ fP,λ ,H‖2 +RL,P( fP,λ ,H) = inf
f∈H

λ‖ f‖2
H +RL,P( f )

is a general SVM solution.

Note:

λ‖ fP,λ ,H‖2 ≤ λ‖ fP,λ ,H‖2 +RL,P( fP,λ ,H)

≤ RL,P(0).

Hence

‖ fP,λ ,H‖H ≤
√

1
λ

RL,P(0).

Theorem 1. Let L : X ×Y ×R→ [0,∞) be a convex loss, P a distribution on X ×
Y and H a Reproducing Kernel Hilbert Space of X with a bounded measureable
kernel. Then

1. If RL,P( f )< ∞ for some f ∈H, then for all λ > 0 there exists at most one general
SVM solution.

2. If L is a p-integrable Nemitski loss, then for all λ > 0 there exists a general SVM
solution.

Proof. 1) Assume that the map f → λ‖ f‖2
H +RL,P( f ) has two minimizers f1, f2

∈ H such that f1 6= f2. Then λ‖ f1‖2
H +RL,P( f1) = λ‖ f2‖2

H +RL,P( f2). Recalling
that ‖ 1

2 ( f1 + f2)‖2
H < 1

2‖ f1‖2
H + 1

2‖ f2‖2
H , this with the convexity of f → RL,P( f )

gives that for f ∗ := 1
2 ( f1 + f2),

λ‖ f ∗‖2
H +RL,P( f ∗)< λ‖ f1‖2

H +RL,P( f1);

that is, f1 is not a minimizer of f → λ‖ f‖2
H +RL,P( f ), and so the assumption that

there are two minimizers is false.
2) Since the kernel k is bounded, the map id : H → L∞(PX ) is continuous. The

convexity and boundedness of L imply that L is continuous. By prior results, it
follows that the map RL,P : L∞(PX )→ R is a continuous map; hence, RL,P : H → R
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is also continuous. Since L is convex, the map RL,P : H → R is also convex. Since
f → λ‖ f‖2

H is convex, f → λ‖ f‖2
H +RL,P( f ) is a linear combination of convex

functions and is also convex.
Set A := { f ∈ H : λ‖ f‖2

H +R+L,P( f )≤ RL,P(0)}. Then f = 0 ∈ A. For f ∈ A,

λ‖ f‖2
H ≤ RL,P(0), (RL,P ≥ 0), so A ⊂

(√
1
λ

RL,P(0)

)
BH , where BH is the closed

unit ball on H. By convex analysis, there exists a minimizer fP,λ (= fP,λ ,H ).

Remark: Convexity of L is not necessary for the existence of a general SVM
solution; it was used in the proof, but its absence does not preclude the presence of
a solution.

Corollary 1. Let L be a convex, locally Lipschitz loss, P a distribution on X×Y with
RL,P < ∞, and H a measureable Reproducing Kernel Hilbert Space with bounded,
measureable kernel k. Then, for all λ > 0, there exists a unique general SVM solu-
tion fP,λ ,H ( fP,λ ∈ H).

Proof. Recall that a locally Lipschitz loss is also a p-integrable Nemitski loss if and
only if RL,P(0) < ∞. Since RL,P < ∞, L is a convex p-integrable Nemitski loss and
the hypotheses of the above theorem are satisfied.

• In the textbook, there are special results for margin-based and distance-based
losses.

4 Representer Theorems

There are a number of results in the literature providing representation formulas for
the SVM solutions.

Theorem 2. (Representer Theorem for Empirical SVM Solutions) Let L : X ×Y ×
R→ [0,∞) be a convex loss and D = {(x1,y1)...(xn,yn)} ⊂ X ×Y . Let H be a
Reproducing Kernel Hilbert Space over X. Then, for all λ > 0, there exists a unique
empirical SVM solution fD,λ such that

‖ fD,λ‖2
H +RL,D( fD,λ ) = inf

f∈H
λ‖ f‖2

H +RL,D( f )

and there exist α1...αn ∈ R such that

fD,λ (x) = Σ
n
i=1αik(x,xi), x ∈ X .

Proof. In this case, the convexity of L implies its continuity. Since convergence in
H implies pointwise convergence, the continuity of RL,D : H→ [0,∞) follows from
the continuity of L. The existence and uniqueness of the SVM solution fD,λ follow
from the same arguments as in Theorem 1.

To derive a representation of fD,λ , let
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X ′ = {x1...xn}

and
H|X ′ = span{k(·,xi) : xi ∈ X ′}.

H|X ′ is a Reproducing Kernel Hilbert Space with kernel k|X ′×X ′ , and there exists an
empirical SVM solution fD,λ ,H|X ′ ∈ H|X ′ .
For f ∈ orthogonal complement (H|X ′)⊥, f (xi) =

〈
f ,k(·,xi)

〉
= 0 for xi ∈ X ′. Let

PX ′ be the orthogonal projection of H→ H|X ′ so that

RL,D(PX ′ f ) = RL,D( f )

and
‖PX ′ f‖H ≤ ‖ f‖H .

Then
inf
f∈H

λ‖ f‖2
H +RL,D( f )≤ inf

f∈H|X ′
λ‖ f‖2

H +RL,D( f )

so that
inf
f∈H

λ‖PX ′ f‖2
H +RL,D(PX ′ f )≤ inf

f∈H
λ‖ f‖2

H +RL,D( f ).

Uniqueness follows the proof of uniqueness from Theorem 1. Suppose there are
two unique solutions f1, f2 so that

λ‖ f1‖2
H +RL,D( f1) = λ‖ f2‖2

H +RL,D( f2) = inf
f∈H

λ‖ f‖2
H +RL,D( f ).

Then, letting f ∗ := 1
2 ( f1 + f2), by the convexity of f → RL,D( f ) we have

λ‖ f ∗‖2
H +RL,D( f ∗)< λ‖ f1‖2

H +RL,D( f1),

so
λ‖ f1‖2

H 6= inf
f∈H

λ‖ f‖2
H +RL,D( f )

and f1 is not a solution.

Proposition 3. (Non-trivial solution). Let L be a convex loss function and P a dis-
tribution on X ×Y such that L is a p-integrable Nemitski loss. Assume H is a Re-
producing Kernel Hilbert Space with a bounded measureable kernel over X with
R∗L,P < RL,P(0). Then, for all λ ≥ 0, fP,λ 6= 0.

Proof. By the hypotheses, there exists an f ∗ ∈ H such that RL,P( f ∗)< RL,P(0). By
the convexity of RL,P, for α ∈ [0,1] we have

λ‖α f ∗‖2
H +RL,P(α f ∗)≤ λα

2‖ f ∗‖2
H +αRL,P( f ∗)+(1−α)RL,P(0) =: h(α).

Since RL,P( f ∗) < RL,P(0), there exists some α∗ ∈ (0,1] that minimizes h : [0,1]→
[0,∞) and so
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λ‖α∗ f ∗‖2
H +RL,P(α

∗ f ∗)≤ h(α∗)< h(0) = λ‖0‖2
H +RL,P(0).

Theorem 3. Let L be a convex, p-integrable Nemitski loss, P a distribution on X ×
Y , and k a bounded measureable kernel on X with separable Reproducing Kernel
Hilbert Space H and canonical feature map Φ : X→H. Also, assume the derivative
of L, |L′|, is a p-integrable Nemitski loss. Then, for λ ≥ 0, the general SVM solution
fP,λ is

fP,λ (x) =
1

2λ

∫
X×Y

L′(x′,y, fP,λ (x
′))k(x,x′)dP(x′Y );

that is,

fP,λ =
−1
2λ

EP[L′Φ ].

Note: If L is not differentiable, one can replace L′ with a sub-differential of L, which
is included as a case in the more general theorem.

Proof. Let X be a measureable space. Since L is differentiable, the risk function
RL,P : L∞(PX ′)→ [0,∞) is Frechét differentiable and

R′L,P( f )(g) =
∫

X×Y
g(x)L′(x,y, f (x))dP(x,y).

Let H be a separable Reproducing Kernel Hilbert Space with bounded, measureable
kernel k and let Φ : X → H be the corresponding canonical feature map.
By prior results, the embedding id : H→ L∞(PX ′) is well-defined and continuous so
that for f0 ∈ H,

(RL,P ◦ id)′( f0) = R′L,P( f0)◦ id.

Hence, for f ∈ H,

(RL,P ◦ id)′( f0) f = R′L,P( f0)◦ id( f )

=
∫

X×Y
f (x)L′(x,y, f0(x))dP(x,y)

Note: Alternatively, one can think of this as

(RL,P ◦ id)′( f0) = E(X ,Y )[L
′(x,y, f0(x))

〈
f .Φ(x)

〉
]

=
〈

f ,E(X ,Y )[L
′(x,y, f0(x))Φ ]

〉
= iE(X ,Y )[L

′(x,y, f0(x))Φ(x)]

where i : H→ H ′ is an isomorphism. In this case, f is an element in H so the final
expectation E(X ,Y ) is an H-valued expectation.

Let G : H→ R be given by G( f ) = ‖ f‖2
H . The Frechét derivative of G is G′ f0 =

2i f0. Let us consider the regularized loss RL,P,λ : H→ R
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RL,P,λ = λG+RL,P ◦ id.

The solution fP,λ minimizes RL,P,λ . Hence,

0 = (λG+RL,P ◦ id)′( fP,λ )

= i(2λ fP,λ +E(X ,Y )[L
′(x,y, fP,λ (x))Φ(x)]).

Thus,
2λ fP,λ =−E(X ,Y )[L

′(x,y, fP,λ (x))Φ(x)].

This shows that

fP,λ (x) =
−1
2λ

∫
X×Y

L′(x′,y, fP,λ (x))k(x,x
′)dP(x′,y).

For data D = {(xi,yi)}N
1 with corresponding empirical distribution, from the above

expression we derive

fD,λ (x) =
−1

2λN
Σ

N
i=1L′(xi,yi, fD,λ (xi))k(x,xi),

showing that the coefficients αi from the prior formula have the form

αi =
−1

2λN
L′(xi,yi, fD,λ (xi)).
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