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1 Statistical Learning Theory

Statistical learning is concerned with the problem: how can we learn a good model
of an unknown distribution P from sampled data?

To illustrate the challenge we face, we recall the classical problem of data regres-
sion. We have collected a set of measurements y1, . . .yn ∈Y at points x1, . . . ,xn ∈ X ,
hence obtaining a dataset D = {(xi,yi)}. We are interest in computing a function
f : X → Y such that f (x) is a good predictor for y ∈ Y a new data point x ∈ X .

Fig. 1 The data regression problem

In choosing the statistical model for the solution function model we face the so-
called Bias-Variance dilemma. In the example, if we choose a linear model, then we
require that all data can be described by a linear function, hence imposing a bias.
If instead we choose as a model a polynomial of higher-degree, we can approxi-
mate better our data. However, little changes in the values yi (due, for instance, to
measurement error) may cause large fluctuations in the model (cf. Fig. 1).
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This observation leads to the following questions. What is the empirical risk
telling us about the true risk? How can we ensure that our learning strategy con-
verges?

1.1 Law of Large Numbers

To illustrate a version of the law of large numbers useful in our context, we set some
notation first.

• Data: D = {(xi,yi) : i = 1,2, · · · ,n, xi ∈ X , yi ∈ {±1}}.
• Risk: RL,P( f ) =

∫
X×Y L(x,y, f (x))dP(x,y).

• Empirical Risk: RL,D( f ) = 1
n ∑

n
i=1 L(xi,yi, f (xi)).

• Loss:

L(xi, f (xi)) =
1
2 | f (xi)− yi|=

{
0 if f (xi) = yi
1 if f (xi) 6= yi.

We can interpret the quantities ξi = L(xi, f (xi)) as discrete random variables as-
sociated with Bernoulli trials (ξi can take values 1 or 0).

We have the following classical estimate.

Lemma 1 (Chernoff Bound (1952)). Let ξ1, . . . ,ξn be independent samples from a
Bernoulli random variable ξ . Then

P{|1
n

n

∑
i=1

ξi−E(ξ )| ≥ ε} ≤ 2 exp(−2nε
2).

That is, as the number of samples increases the difference between the empirical
mean and the expectation of ξ converges to 0 in probability.

The following is a generalization of the above lemma.

Theorem 1 (Hoeffding Bound (1963)). Let ξ1, . . . ,ξn be independent samples from
a bounded random variable ξ with values in [a,b]. Let Qn =

1
n ∑

n
i=1 ξi. Then for any

ε > 0,

P(Qn−E(ξ )≥ ε)≤ exp(− 2nε2

(b−a)2 ),

P(E(ξ )−Qn ≥ ε)≤ exp(− 2nε2

(b−a)2 ).

In order to prove Theorem 1, we recall the following classical inequality.

Lemma 2 (Markov’s inequality). Let ξ be a non-negative r.v. with distribution P.
For all λ > 0, we have

P(ξ ≥ λE(ξ ))≤ 1
λ
.
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Proof.

E(ξ )=
∫

∞

0
ξ dP(ξ )≥

∫
∞

λE(ξ )
ξ dP(ξ )≥ λE(ξ )

∫
∞

λE(ξ )
dP(ξ )= λE(ξ )P(ξ ≥ λE(ξ )).

Proof of Theorem 1. WLOG, let E(ξ ) = 0 (if not, let ξ̄ = ξ −E(ξ )). To be able
to apply Markov’s inequality, we use the map Qn → exp(sQn) with s > 0. Hence,
by Markov’s inequality,

P(Qn ≥ ε) = P(exp(sQn)≥ exp(sε))

≤ e−sε E(esQn)

= e−sε E(exp(
s
n

n

∑
i=1

ξi))

= e−sε E(Π n
i=1 exp

sξi

n
)

≤ e−sε
Π

n
i=1E(exp

sξi

n
)

≤ e−sε exp(
s2(b−a)2

8n
).

Note that the above inequality holds for any s > 0. The proof is completed by choos-
ing s = 4nε

(b−a)2 . ut

The result above shows that, for fixed f , we can RD,L( f ) P−→ RP,L( f ), that is
we achieve convergent in probability. In this case, the probability of a large devia-
tion between RD,L( f ) and RP,L( f ) can be controlled (the larger the sample size the
smaller the probability).

However, in practical learning problems, we are looking for a solution fopt that
minimizes the risk while searching for a function fn that minimizes the empirical
risk. That is, the function f is not fixed and, thus, the result of Theorem 1 does not
apply to this case. As illustrated in Fig. 2, the solution function fn that minimizes the
empirical risk is gong to be different from the solution function fopt that minimizes
the risk.

1.2 Consistency of empirical risk minimization

We want to identify conditions such that the function fn that minimizes RD,L( f )
(here the index n is the size of the training set D) is a good approximation of the
function fopt that minimizes RP,L( f ). This condition is associated with a notion of
consistency that entails a restriction on the set of admissible functions F over which
the empirical risk is minimized.

Since fopt is the solution of min f∈F RP,L( f ), then
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Fig. 2 Intuitive illustration of the convergence of the empirical risk as compared to the actual risk.

RP,L( f )−RP,L( fopt)≥ 0, ∀ f ∈F .

Similarly, since fn the solution of min f∈F RD,L( f ), we have that

RD,L( f )−RD,L( fn)≥ 0, ∀ f ∈F .

It follows that

RP,L( fn)−RP,L( fopt)≥ 0 and RD,L( fopt)−RD,L( fn)≥ 0.

Thus

0≤ (RP,L( fn)−RP,L( fopt))+(RD,L( fopt)−RD,L( fn))

= (RP,L( fn)−RD,L( fn))+(RD,L( fopt)−RP,L( fopt))

≤ sup
f∈F

(RP,L( f )−RD,L( f ))+(RD,L( fopt)−RP,L( fopt))

By law of large numbers, RD,L( fopt)
P−→ RP,L( fopt) as n→ ∞. It follows that, if

sup
f∈F

(RP,L( f )−RD,L( f )) P−→ 0, as n→ ∞, (1)

then RP,L( fn)
P−→ RP,L( fopt) and RD,L( fopt)

P−→ RD,L( fn), that is, we obtain consis-
tency of the empirical risk minimization of the class of functions F .

The argument above shows that one-sided uniform convergence (1) gives a suffi-
cient condition for consistency. In fact, this condition is also necessary.

Theorem 2. One-sided uniform converges in probability

lim
n→∞

P[ sup
f∈F

(RP,L( f )−RD,L( f ))> ε] = 0,
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for all ε > 0, is a necessary and sufficient condition for non-trivial consistency of
empirical risk minimization (ERM).

The theorem shows that consistency and, hence, learning, depends critically on
the selection of the set of admissible functions F over which the empirical risk is
minimized.

Below we take a closer look at the implications of Theorem 2 and derive condi-
tions on the class F guaranteeing consistency of the empirical risk minimization.
There are two main ideas we explore: union bound + symmetrization

To introduce union bounds, let us start by examining the simple case where F =
{ f1, f2}. For i = 1,2, let

Ci
ε = {(x1,y1), · · · ,(xn,yn) : RP,L( fi)−RD,L( fi)> ε}.

It follows that

P( sup
f∈F

(RP,L( f )−RD,L( f ))> ε) = P(C1
ε ∩C2

ε )

= P(C1
ε )+P(C2

ε )−P(C1
ε ∩C2

ε )

≤ P(C1
ε )+P(C2

ε ).

with equality holding iff events are disjoint. More generally, if F = { f1, f2, · · · , fm},
then

P( sup
f∈F

(RP,L( f )−RD,L( f ))> ε)≤
m

∑
i=1

P(Ci
ε).

The last inequality is called the union bound and it shows how to manage the situ-
ation when F is a finite set. To deal with infinite case, we use the following sym-
metrization result due to [Vapnik, Chervonenkis, 1979].

Lemma 3 (Symmetrization). For mε2 > 2 we have

P[ sup
f∈F

(RP,L( f )−RD,L( f ))> ε]≤ 2P[ sup
f∈F

(RD,L( f )−R′D,L( f ))> ε/2],

where the first P refers to the distribution of i.i.d. samples of size n and the second P
refers to the distribution of i.i.d. samples of size 2n; in the latter case, RD,L measures
the loss on the first half of the samples and R′D,L measures the loss on the second
half.

Lemma 3 shows that class F is effectively finite. The empirical risk defines
functions by their values over m points, or 2m, as in the right hand side of the lemma.
Since at each point a function can only take 2 possible values, there are at most 22m

possible elements in F as defined by their value at 2m points).
For a 2m sample set D2m = {(x1,y1), ...,(x2m,y2m)}, we define N(F ,D2m) = to

be the cardinality of F when restricted to x1, ...,x2m. That is, it counts the number of
functions in F that can be distinguished by their values on x1, ...,x2m. The function
N(F ,2m) counts the maximum number of functions that can be distinguished (over
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all possible choices of 2m samples) by their values x1, ...,x2m. N(F ,2m) is called
the shattering coefficient of F and measures the number of ways the class F can
separate the patterns into 2 classes. If N(F ,2m) = 22m, then all possible separation
can be implemented by function in this class and we say that F shatters 2m points.
Note that this means that there exists a set of 2m patterns that can be separated in all
possible way but it does not necessarily apply to all sets of 2m patterns.

Using Lemma 3, the law of large numbers and the union bound, Vapnik and
Chervonenkis derived the following estimate.

P[ sup
f∈F

(RP,L( f )−RD,L( f ))> ε] ≤ 4E[N(F ,D2m)]exp(−mε2

8
)

= 4 exp(lnE[N(F ,D2m)]−
mε2

8
), (2)

where the term lnE[N(F ,D2m)] is known as the annealed entropy.
This shows that, provided E[N(F,D2m)] does not grow exponentially with respect

tom, then one can derive a non-trivial bound about the test error.
From (2), we can derive a bound on RP,L( f ). For that, set the RHS of the inequal-

ity equal to δ > 0, then solve for ε . We obtain that, with probability at least 1− δ ,
we have

RP,L( f )≤ RD,L( f )+

√
8
m
(lnE[n(F,D2m)]+ ln

4
δ
), (3)

where the second term on the RHS of the inequality is called the confidence or
capacity term

We remark that the bound is independent of f and hods, in particular, for the
function fm minimizing the empirical risk. The capacity term is a property of the
function class F and not of the individual function f . It follows that the bound cannot
be minimized over a specific f . Instead, we can introduce a structure on F and
minimize over the elements of the structure leading to Structure Risk Minimization.

The capacity term expressed in terms of the annealed entropy. InE[N(F ,D2m)]
is impractical to evaluate. As a result, alternative bounds have been proposed in the
literature. We describe below how to derive the notion of VC dimension.

For a single data point (x,y), f causes a loss L(y, f (x)) = 1
2 | f (x)−y|. For a larger

sample Dm =(x1,y1), ...,(xm,ym), the loss vector is ξ f =(L(y1, f (x1)), ...,L(ym, f (xm)))
whose cardinality is N(F ,Dm). The VC entropy is defined as

HF (m) = E[lnN(F ,Dm)],

where E is taken over the random generation of m samples from P. One can show
that the condition

lim
m→∞

1
m

HF (m) = 0

is equivalent to

lim
n→∞

P[ sup
f∈F

(RL,P( f )−RL,D( f ))> ε] = 0 ∀ε > 0
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Fig. 3 Graphical illustration of risk minimization.

which implies the consistency of empirical risk minimization Theorem 2.
By exchanging the expectation and the logarithm in the definition of HF (m) we

have
Hann

F = ln E[N(F ,Dm)] = annealed entropy.

Since ln is concave, then
HF (m)≤ Hann

F (m).

One can show that the condition

lim
m→∞

1
m

Hann
F (m) = 0

is necessary and sufficient to have

P[ sup
f∈F

(RP,L( f )−RD,L( f ))> ε]≤ 4exp((
1
m

Hann
F (2m)− ε

2) ·m).

Next, we define the growth function

GF (m) = max
Dm∈X ×(±1)

lnN(F ,Dm) = lnN(F ,m).

The convergence

lim
n→∞

1
m

GF (m) = 0 (4)

is necessary and sufficient for exponentially fast convergence of risk for all under-
lying distributions P.

If F is a very rich class so that, for any sample of size m, the points can be
sheltered, then GF (m) = m ln(a). In this case, (4) does not hold and learning is not
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successful. In the other case, there exists a maximal m for which (4) holds. This
number is called the VC dimension and is denoted with h. Hence, the VC dimension
is the maximal number of points that can be shattered by a function in F . For m≤ h,
the growth function GF(m)increases linearly with the sample size. If m> h, it grows
only logarithmically and this is the situation where learning can succeed. We have:

GF (m)≤ h(lnm/h+1).

In fact, we have the following succession of capacity concepts and corresponding
inequalities

HF (m)≤ Hann
F ≤ GF (m)≤ h(lnm/h+1).

Using these observations, we derive the following estimate of the risk in terms of
the VC dimension h:

RP,L( f )≤ RD,L( f )+

√
1
m

h(ln
2m
h

+1)+ ln
4
δ
,

which holds with probability< 1−δ . This is illustrated in Fig. 3.

1.3 Example of VC dimension

Let x1,x2,x3 ∈ R2 be not collinear points and consider the problem of classifying
binary patters using functions in the class F = {hyperplanes inR2}. There are 23 =
8 ways to assign the 3 points to 2 classes and all 8 assignments can be realized with
separating lines. That is, we can always find f ∈F with f (xi) = yi ∀i (see Fig. 4).
This shows that the VC dimension of F is h ≥ 3. Since we can never shatter four
points in R2 using functions in F , then h = 3.

Using a similar argument, one can show that the VC dimension of the class F
of hyperplanes in RN has VC dimension h = N +1.

Fig. 4 Three points in R3 can always be separated in two groups by a line provided they are not
collinear.
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Finally, we examine the VC dimension associated with the SVM problem. While
in this case the dimnsion of the featire space can be even infinite, however the SVM
problem invilves hyperplanes with margins which has the consequence of reducing
the space capacity.

Theorem 3 (Vapnik, 1979). Consider hyperlane < w,x >= 0 where w is nor-
malized such that they are in canonical form with respect to X{x1, . . . ,xr}, i.e.,
min(1,...,r) | < w,xi > | = 1. The set of decision functions fw =< w,x > define on
X and satisfying the constraint ‖ w ‖< Λ has VC dimension satisfying h ≤ R2Λ 2,
where R is the radius of smallest ball centered at origins and containing X.

Therefore, according to the theorem, one can control the VC dimension irrespec-
tive of the dimension of the space by controlling the quantity ‖ w ‖.


