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1 Concentration of Measure Inequalities

Concentration of measure is a phenomenon that is related to the classical law of
large numbers.

1.1 McDiarmid’s Bound

Roughly speaking, McDiarmid’s bound states that if arbitrary replacements of ran-
dom variables ξi do not affect the value of the random variable g(ξ1, . . . ,ξm) exces-
sively, then g is concentrated.

Theorem 1 (McDiarmid ). Let ξ1, . . . ,ξm be i.i.d. random variables and assume
that there exists a function g : ξ m→ R with the property that for all i ∈ [m] (we use
the shorthand [m] := 1, . . . ,m), and ci > 0,

sup
ξ1,...ξm,ξ ′i∈ξ

|g(ξ1, . . .ξm)−g(ξ1, . . .ξi−1,ξ
′
i ,ξi+1, . . . ,ξm)| ≤ ci (1)

where ξ ′i is drawn from the same distribution as ξi. Then

P{|g(ξ1, · · ·ξm)−E(g(ξ1, · · ·ξm))|> ε} ≤ 2exp
(
− 2ε2

∑
m
i=1 c2

i

)
. (2)

This means that a bound similar to the law of the large numbers can be applied
to any function g which does not overly depend on individual samples ξi. Returning
to the example of the sample mean, if we define

g(ξ1, · · ·ξm) :=
1
m

m

∑
i=1

ξi

1
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where ξ ∈ [a,b], then, clearly, ci =
1
m (b−a) since f can only change by this amount

if one particular sample is replaced by another. This mean that the rhs of (2) becomes
2exp

(
− 2mε2

(b−a)2

)
, in other words, we recover Hoeffding’s bound as a special case.

1.2 Uniform Stability and Convergence

In order to apply these bounds to learning algorithms we must introduce the notion
of uniform stability. This is to determine the amount by which an estimate f : X →
Y based on the training data D := {(x1,y1), . . . ,(xm,ym)} ⊂ X ×Y changes if we
change one of the training patterns.

Definition 1 (Uniform Stability). Denote a training sample of size m by D. More-
over, denote by Di := (D\{zi})∪{z}, where z = (x,y) is the training sample with
the ith observation replaced by z. Finally, denote by fZ the estimate produced by our
learning algorithm of choice (and likewise by fZi the estimate based on Zi). We call
this mapping Z→ fZ uniformly β -stable with respect to a loss function L if

|L(x,y, fZ(x))−L(x,y, fZi(x))| ≤ β for all (x,y) ∈ X×Y, all Z, and all i. (3)

This means that the loss due to the estimates generated from Z, where an arbitrary
pattern of the sample has been replaced, will not differ anywhere by more than β .

As we shall see, the notion of uniform stability is satisfied for regularization
networks of different types, provided that the loss function L is Lipschitz continuous.
The following theorem uses Theorem 1 to prove that β -stable algorithms exhibit
uniform convergence of the empirical risk Remp[ f ] to the expected risk R[ f ].

Theorem 2 (Bousquet and Elisseeff). Assume that we have β -stable algorithm
with the additional requirement that fZ(x) ≤ M for all x ∈ X and for all training
samples Z ⊂ X×Y. Then, for m≥ 8M2

ε2 , we have

P{|Remp[ fZ ]−R[ fZ ]|> ε} ≤ 64Mmβ +8M2

mε2 (4)

and for any m≥ 1

P{|Remp[ fZ ]−R[ fZ ]|> ε +β} ≤ 2exp
(
− mε2

2(mβ +M)2

)
. (5)

This means that if β decreases with increasing m, or, in particular, if β =O(m−1),
then we obtain bounds that are optimal in their rate of convergence, specifically,
bounds which have the same convergence rate as Hoeffding’s bound .

To keep matters simple, we only the second inequality
Proof We first give a bound on the expected difference between Remp[ fZ ] and

R[ fZ ] (hence the bias term) and subsequently will bound the variance. This leads to
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|EZ
[
Remp[ fZ ]−R[ fZ ]

]
|=
∣∣∣EZ,z

[ 1
m

m

∑
i=1

L(xi,yi, fZ(xi))−L(x,y, fZ(x))
]∣∣∣

=
∣∣∣EZ

[ 1
m

m

∑
i=1

L(x,y, fZi(x))−L(x,y, fZ(x))
]∣∣∣≤ β (6)

The last equality (8) followed from the fact that, since we are taking the expec-
tation over Z,z, we may as well replace zi by z in the terms stemming from the
empirical error. The bound then follows from the assumption that we have a uni-
formly β -stable algorithm.

Now that we have a bound on the expectation, we deal with the variance. Since
we want to apply Theorem 1, we have to analyze the deviations of (Remp[ fZ ]−R[ fZ ])
from (Remp[ fZi ]−R[ fZi ]).∣∣(Remp[ fZ ]−R[ fZ ])− (Remp[ fZi ]−R[ fZi ])

∣∣≤ (7)∣∣R[ fZ ]−R[ fZi ]
∣∣+ ∣∣Remp[ fZ ]−Remp[ fZi ]

∣∣≤ (8)

β +
1
m
|L(xi,yi, fZ(xi))−L(x,y, fZi(x))|+

+
1
m

m

∑
j 6=i

∣∣L(x j,y j, fZ(x j))−L(x j,y j, fZi(x j))
∣∣≤ β +

2M
m

+β (9)

Here the second inequality follows from the triangle inequality and the fact that
the learning algorithm is β -stable. Finally, we split the empirical risks into their
common parts depending on Zi and the remainder. From the last inequality it follows
that Li = 2 βm+M

m as required by Theorem 1. This, in combination with (6), completes
the proof. ut

1.3 Uniform Stability of Regularization Networks

We next show that the learning algorithms we have been studying so far actually
satisfy Definition 1 and compute the corresponding value of β .

Theorem 3 (Algorithmic Stability of Risk Minimizers). The algorithm minimiz-
ing the regularized risk functional Rreg

Rreg[ f ] := Remp[ f ]+
λ

2
|| f ||2 = 1

m

m

∑
i=1

L(xi,yi, f (xi))+
λ

2
|| f ||2 (10)

has stability β = 2C2k2

mλ
, where k is a bound on ||k(x, ·)|| =

√
k(x,x), L is a convex

loss function, || · || is the RKHS norm induced by k, and C is a bound on the Lipschitz
constant of the loss function L(x,y, f (x)), viewed as a function of f (x).

We can see that the stability β of the algorithm depends on the regularization con-
stant via 1

λm and into Theorem 4 below gives a useful convergence bound, hence we
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may be able to afford to choose weaker regularization if the sample size increases.
For many estimators, such as Support Vector Machines, we use a constant value of
C = 1

λm . In the context of algorithmic stability this means that we effectively use
algorithms with the same stability, regardless of the sample size.

2 Leave-One-Out Estimates

Rather than betting on the proximity between the empirical risk and the expected
risk we may make further use of the training data and compute what is commonly
referred to as the leave-one-out error of a sample. The basic idea is that we find an
estimate f i from a sample consisting of m−1 patterns by leaving the ith pattern out
and, subsequently, compute the error of mis-prediction on (xi,yi). The error is then
averaged over all m possible patterns. The hope is that such a procedure will provide
us with a quantity that is very closely related to the real expected error.

Before we delve into the practical details of estimating the leave-one-out error,
we need a formal definition and have to prove that the leave-one-out estimator is a
useful quantity.

Definition 2 (Leave-One-Out Error). Denote by fZ the estimate obtained by a
learning algorithm, given the sample Z, by Zi := Z′\{(xi,yi)} the sample obtained
by removing the ith pattern, and by fZi the corresponding estimate, obtained by the
same learning algorithm (note that we changed the definition of Zi from that in the
previous section). Then the leave-one-out error is defined as

RLOO :=
1
m

m

∑
i=1

L(xi,yi, fZi(xi)). (11)

The following theorem by Luntz and Brailovsky shows that RLOO(Z) is an almost
unbiased estimator.

Theorem 4 (Leave-One-Out Error is Almost Unbiased). Denote by P a distri-
bution over X ×Y , and by Zm and Zm−1 samples of size m and m− 1 respectively,
drawn i.i.d. from P. Moreover, denote by R[ fZm−1 ] the expected risk of an estimator
derived from the sample Zm−1. Then, for any learning algorithm, the leave-one-out
error is almost unbiased,

EZm−1 [R[ fZm−1 ]] = EZm [RLOO(Zm)]. (12)

Proof We begin by rewriting EZm−1 [R[ fZm−1 ]] in terms of expected values only.
By definition R( f ) := E[L(x,y, f (x))] and therefore, the lhs of (14) can be written as

EZm−1 [R[ fZm−1 ]] = EZm−1∪{(x,y)}[L(x,y, fZm−1(x))]. (13)

The leave-one-out error, on the other hand, can be restated as
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EZm [RLOO(Zm)] =
1
m

m

∑
i=1

EZm [L(xi,yi, fZi
m
(xi))] (14)

= EZm−1∪{(xm,ym)}[L(xm,ym, fZm−1(xm))]. (15)

Here we use the fact that expectation and summation can be interchanged. In addi-
tion, a permutation argument shows that all terms under the sum have to be equal,
hence we can replace the average by one of the terms. Finally, if we rename (xm,ym)
by (x,y), then (17) becomes identical to the rhs of (16) which proves the theorem.

�

This demonstrates that the leave-one-out error is a sensible quantity to use. We
are short, however, of another key ingredient required in the use of this method when
bounding the error of an estimator; we need a bound on the variance of RLOO(Z).
While general results exist, which show that the leave-one-out estimator is not a
worse estimate than the estimate based on the empirical error (see Kearns for ex-
ample, who shows that at least the rate is not worse), we would expect that, on the
contrary, the leave-one-out error is much more reliable than the empirical risk.

Below we state a result which is a slight improvement on Theorem 2 and which
uses the same concentration of measure techniques used above.

Theorem 5 (Tail Bound for Leave-One-Out Estimators). Denote by A a β -stable
algorithm (for training set of size m− 1) with the additional requirement that 0 ≤
A(Z)≤M for all z ∈ X×Y and for all training samples Z ⊂ X×Y. Then we have:

P{|RLOO(Z)−EZ [RLOO(Z)]|> ε} ≤ 2exp
(
− 2mε2

(mβ +M)2

)
. (16)

Proof. The proof is very similar to that of Theorem 2 and uses Theorem 1. All
we must do is show that RLOO(Z) does not change by too much if we replace one of
the patterns in Z by a different pattern. This means that, for Zi := Z\zi∪{z} (where
z := (x,y)), we have to determine a constant c0 such that

|RLOO(Z)−RLOO(Zi)| ≤ c0 for all i. (17)

In the following we denote by f j
Z (and f j

Zi
respectively) the estimate obtained when

leaving out the jth pattern. By direct computation

|RLOO(Z)−RLOO(Zi)| ≤

[
1
m ∑

j 6=i
|L(x j,y j, f j

Z(x j))−L(x j,y j, f j
Zi(x j))|

]
+

1
m
|L(xi,yi, f i

Z(xi))−L(xi,yi, f i
Zi(xi))|

≤ 1
m ∑

j 6=i
β +

M
m

< β +
M
m
.
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In the last inequality we use the fact that we have a β -stable algorithm, hence the
individual summands are bounded by β . In addition, the loss at arbitrary locations is
bounded from above by M (and by 0 from below), hence two losses may not differ
by more than M overall. This shows that co ≤ β + M

m . Using Theorem proves the
bound. ut

We may use the values of β computed for minimizers of the regularized risk
functional (Theorem3)) in order to obtain practical bounds. The current result is an
improvement on the confidence bounds available for minimizers of the regularized
risk functional (there is no dependency on β in the confidence bound and the con-
stants in the exponential term are slightly better). One would, however, suspect that
much better bounds should be possible.

In particular, rather than bounding each individual term in the proof of Theorem3
by β

m , it should be possible to take advantage of averaging effects and, thus, replace
the overall bound β by β√

m for example. It is an open question whether such a bound
can be obtained.

Also note that Theorem 5 only applies to Lipschitz continuous, convex loss func-
tions. This means that we cannot use the bound in the case of classification, since
the loss function is discontinuous (we have 0-1 loss). Still, the leave-oneout error
turns out to be currently the most reliable estimator of the expected error available.
Hence, despite some lack of theoretical justification, one should consider it a method
of choice when performing model selection for kernel methods.

This brings us to another problem; how should we compute the leave-one-out
error efficiently, without running a training algorithm m times? We must find ap-
proximations or good upper bounds for RLOO(Z) which are cheap to compute.

3 Entrophy and Covering Numbers

3.1 Definitions of Entrophy and Covering Numbers

Despite its improvement over the original definition, the fat shattering dimension is
still a fairly crude summary of the capacity of the class of functions under consid-
eration. Covering and entropy numbers can be used to derived more finely grained
capacity measures. We begin with some definitions.

Recall that an ε-cover of a set M in E is a set of points in E such that the union
of all ε-balls around these points contains M.

The ε-covering number of F with respect to the metric d, denoted N (ε,F ,d),
is the smallest number of elements of an ε-cover for F using the metric d. Typically,
F will be the class of functions under consideration. Moreover, d will be the metric
induced by the values of f ∈ F on some data X = {x1, · · · ,xm}, such as the l∞

m
metric. We denote this quantity by l∞

m(X). For ε = 1 we recover the (scale less)
definition of the covering number.
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To avoid some of the technical difficulties, that come with this dependency on X,
one usually takes the supremum of N (ε,F , l∞

m(X)) with respect to X . This quantity
will be called the ε-growth function of the function class F . Formally we have

N m(ε,F ) := sup
x1,...,xm∈X

N (ε,F , lX
∞), (18)

where N (ε,F , lX
∞) is the ε-covering number of F with respect to lX

∞ . Most gener-
alization error bounds can be expressed in terms of N m(ε,F ). An example (The-
orem 6) is given in the following section.

Covering numbers and the growth function are inherently discrete quantities. The
functional inverse of N m(ε,F ), referred to as the entropy number, however, is
more amenable to our analysis.The nth entropy number of a set M ⊂ E, for n ∈ N,
is given by

εn(M) := inf
{

ε > 0
∣∣∣there exists an ε-cover for M in E containing n or fewer points

}
(19)

Since we are dealing with linear function classes, we will introduce the notion of
entropy numbers of operators and represent the possible function values that these
linear function classes can assume on the data as images of linear operators.

For this purpose we need to introduce the notion of entropy numbers of operators.
Denote by E,G Banach spaces and by L (E,G) the space of linear operators from
E into G. The entropy numbers of an operator T ∈L (E,G) are defined as

εn(T ) := εn(T (UE)). (20)

Note that ε1(T )−||T ||, and that εn(T ) is well-defined for all n ∈ N precisely if T is
bounded. Moreover, limn→∞εn(T ) = 0 if and only if T is compact; that is, if T (UE)
is precompact.

A set is called precompact if its closure is compact. A set is called compact if
every sequence in S has a subsequence that converges to an element also contained
in S.

The dyadic entropy numbers of an operator are defined as

en(T ) := ε2n−1(T ),n ∈ N; (21)

similarly, the dyadic entropy numbers of a set are defined from its entropy numbers.
A beautiful introduction to entropy numbers of operators is given in a book by Carl
and Stephani.

3.2 Generalization Bounds via Uniform Convergence

Let Em[ f ] := 1
m ∑

m
i=1 f (xi) denote the empirical mean of f on the sample x1, . . . ,xm.
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Theorem 6 (Alon, Ben-David, Cesa-Bianchi, and Haussler, 1997). Let F be a
class of functions from X into [0,1]. For all ε > 0, and all m≥ 2

ε2 ,

P

{
sup
f∈F
|Em[ f ]−E[ f ]|> ε

}
≤ 12m ·E

[
N
(

ε

6
,F , lX̄

∞

)]
exp
(
− ε2m

36

)
, (22)

where the P on the left hand side denotes the probability w.r.t. the sample x1, . . . ,xm
drawn i.i.d. from the underlying distribution, and E the expectation w.r.t. a second
sample X̄ = (x̄>1 , . . . , x̄

>
2m), also drawn iid from the underlying distribution.

In order to use this result one usually makes use of the fact that, for any P,

EX̄
[
N (ε,F , lm

∞(X̄))
]
≤N m(ε,F ). (23)

An alternative is to exploit the fact that N (ε,F , lm
∞(X̄)) is a concentrated random

variable and measure N on the actual training set. Theorem 6 in conjunction with
(23) can be used to give a generalization error result by applying it to the loss-
function induced class.

3.3 Entropy Numbers for Kernel Machines

Proposition 1 (Mapping Φ into l2). Let S be diagonal map

S : RN → RN

(x j) j 7→ S(x j) j = (s jx j) j, (24)

where (s j) j ∈ RN . If (s j
√

l j) j ∈ l2, then S maps Φ(X) into a ball centered at the
origin whose radius is R = ||(s j

√
l j) j||.

As a consequence of Proposition 1, we can construct a mapping A from the unit
ball in l2 to an ellipsoid E such that Φ(X)⊂ E , as in the following diagram:

The operator A will be useful for computing the entropy numbers of concatena-
tions of operators. Knowing the inverse will allow us to compute the forward oper-
ator, and that can be used to bound the covering numbers of the class of functions,
as shown in the next subsection.

Define
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R :=
∣∣∣∣∣∣(s j

√
l j) j

∣∣∣∣∣∣
l2

(25)

From Proposition 1 it is clear that we may use

A = RS−1 =
∣∣∣∣∣∣(s j

√
l j) j

∣∣∣∣∣∣
l2

S−1 (26)

We call such scaling (inverse) operators admissible. The next step is to compute the
entropy numbers of the operator A and use this to obtain bounds on the entropy
numbers for kernel machines such as SVMs.

The functions that an SV machine generates can be expressed as x 7→ 〈w,Φ(x)〉+
b, where w,Φ(x) ∈H and b ∈ R. For now we consider the simplified class

FA := {x 7→ 〈w,Φ(x)〉|x ∈ X , ||w|| ≤Λ} ⊆ RH . (27)

What we seek are the lm
∞ covering numbers for the class FΛ induced by the kernel

in terms of the parameter Λ . This is the inverse of the size of the margin in feature
space, or, equivalently, the size of the weight SV Classes vector in feature space
as defined by the dot product in H . We call such hypothesis classes with a length
constraint on the weight vectors in feature space SV classes. Let T be the operator
T = SΦ(X)Λ where Λ ∈ R+, and define the operator SΦ(X) by

SΦ(X) : l2→ lm
∞

SΦ(X) : w 7→ (〈Φ(x1),w〉, . . . ,〈Φ(xm),w〉) (28)

The following theorem is useful in computing entropy numbers in terms of T and
A.

For the next theorem:

Φ : X → lNH
2

x 7→ (
√

λ jφ j(x)) j=1,...,NH
, (29)

for almost all x ∈ X .

Theorem 7 (Bounds for SV classes). Let k be a Mercer kernel and let T :=
SΦ(X)Λwhere Λ ∈ R+. Let A be defined by (30). Then the entropy numbers of T
satisfy the following inequalities, for n > 1;

εn(T )≤ c||A||Λ log−1/2
2 n log1/2

2 (1+
m

log2 n
) (30)

εn(T )≤ 6Λεn(A) (31)

εn(T )≤ 6cΛ log−1/2
2 n log1/2

2 (1+
m

log2 n
)εt(A). (32)


