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1 Introduction

Let X := {x1 . . .xn} ⊂ Rd where d ∈ N and the coordinates of each point are ran-
domly generated from a normal pdf with µ = 0, σ = 1. Let’s consider X as our
dataset. A natural question to ask is: when d is large, how does high dimensional
data compare with our intuition of 2D and 3D spaces? In learning about high di-
mensional data, we will discover the following observations:

• For d large, points are essentially equally spaced.
• Second, the volume of the unit ball, Ud , in Rd goes to 0 as d→ ∞.

The main idea we are going to use is applying the Law of Large Numbers. The
law of large numbers says with high probability that the average of the samples,
|x− y|2 = ∑

d
i=1 |xi − yi|2 where x,y ∈ Rd , will be close to the expectation of the

random variable as d gets large. The precise statement is given in the following
theorem, and the proof can be found in [1].

Theorem 1 (Law of Large Numbers). Let x1 . . .xn be n independent samples of a
random variable x. Then,

P(|1
n

n

∑
i=1

xi−E(x)|> ε)≤ var(x)
nε2

Let’s give a couple examples of applications of the law of large numbers.

Example 1. Let z be a random variable whose coordinates are taken from N (µ =
0,σ = 1

2π
) where N denotes a Gaussian distribution. With this choice of parame-

ters, the pdf is 1 at the origin. Note, that the probability density function is bounded
below by a constant over the unit ball.
By the law of large numbers,

|z−0|2 =
d

∑
i=1

z2
i ≈ const d.

1
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This shows that there is a vanishingly small probability that z ∈ B(0,1).

Example 2. Let y, z be d-dimensional random variables whose coordinates are
drawn from a normal pdf with µ = 0, σ = 1. By the previous example, |z|2 ≈ d,
|y|2 ≈ d. Observe that:

|y− z|2 =
d

∑
i=1
|yi− zi|2

≈ E((yi− zi)
2)d

= (E(y2
i )+E(z2

i )−2E(yizi))d

= 2d.

By the Pythagorean theorem, y and z are essentially orthogonal.

2 Geometry of d-balls

Claim. Most of the volume is concentrated near the surface.

Given a set A⊂ Rd , we define

(1− ε)A := {(1− ε)x : x ∈ A}

If we shrink the set A by 1− ε , then the resulting set is (1− ε)A. See Figure 1 for a
visualization in two dimensions.

Fig. 1 Shrinking by a size length f implies a volume change by f d

Observe that,
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volume((1− ε)A)
volume(A)

= (1− ε)d

≤ e−εd [ since (1− ε)≤ e−ε ]

For ε fixed, this suggests that the ratio goes to 0 and d→ ∞, showing that most
of the volume of A is contained near the surface. To make this more precise, let Ud
be the unit ball in Rd . At least a (1− e−εd) fraction of its volume is concentrated in

Ud
(1−ε)Ud

, that is, on a shell of width ε near the surface. See the figure below from [1]

for a visualization when ε = 1
d .

Fig. 2 Reprinted from Foundations of Data Science (p. 17), by A. Blum, J. Hopcroft and R. Kan-
nan, 2020, Cambridge: Cambridge University Press. Copyright 2020 by Cambridge University
Press.

Proposition 1. As d→ ∞, vol(Ud)→ 0

Proof. To prove this, lets first write the volume of Ud in polar coordinates.
That is,

vol(Ud) =
∫

Sd
dΩ

∫ 1

r=0
rd−1dr =

A(Ω)

d

where A(Ω) is the surface of the d-sphere.
Consider,

I(d) =
∫
R
. . .
∫
R

e−x2
1−x2

2...−x2
d dx1 . . .dxd

= (
∫
R

e−u2
du)d

= π
d
2

Moreover,
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I(d) =
∫

Sd
dΩ

∫
∞

0
e−r2

rd−1dr

= A(Ω)
∫

∞

0
e−tt

d−1
2 (

1
2

t−
1
2 )dt

= A(Ω)
1
2

∫
∞

0
e−tt

d
2−1dt

= A(Ω)
1
2

Γ (
d
2
).

It follows that

A(Ω) =
π

d
2

1
2Γ ( d

2 )
.

Thus,

vol(Ud) =
2
d

π
d
2

Γ ( d
2 )
→ 0 as d→ ∞.

3 Most of the volume of Ud is near the equator

Let’s first choose a vector x1 to be the North pole. Let H denote the upper hemisphere
of Ud , and let A be the fraction of H defined by x1 ≥ c√

d−1
. This can be seen in the

figure below from [1].

Fig. 3 Reprinted from Foundations of Data Science (p. 21), by A. Blum, J. Hopcroft and R. Kan-
nan, 2020, Cambridge: Cambridge University Press. Copyright 2020 by Cambridge University
Press.

Theorem 2. For c ≥ 1 and d ≥ 3, at least 2
c e−

c2
2 fraction of the volume of Ud has

|x1| ≤ c√
d−1
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Proof. We will show that at most a 2
c e−

c2
2 fraction of the volume of H has x1 ≥

c√
d−1

.
Specifically, we will show

vol(A)
vol(H)

≤ 2
c

e−
c2
2 .

The surface area of a d-1 dimensional ball with radius
√

1− x2
1 is Ad−1 = rd−1Vd−1.

Integrating this in cylindrical coordinates gives,

vol(A) =
∫ 1

c√
d−1

(1− x2
1)

d−1
2 Vd−1dx1.

Using 1− x≤ e−x, we get

vol(A)≤
∫

∞

c√
d−1

e−(
d−1

2 )x2
1Vd−1dx1.

By Hypothesis,

x1 ≥
c√

d−1
=⇒ 1≤ x1

√
d−1
c

.

Therefore,

vol(A)≤
∫

∞

c√
d−1

x1
√

d−1
c

e−(
d−1

2 )x2
1Vd−1dx1

=Vd−1

√
d−1
c

∫
∞

c√
d−1

x1e−(
d−1

2 )x2
1 dx1

=Vd−1

√
d−1
c

1
d−1

e−
c2
2 .

Thus,

vol(A)≤ Vd−1

c
√

d−1
e−

c2
2 .

Next, we estimate vol(H). The idea is to find a lower bound for vol(H).
We have

vol(H)≥ vol(cylinder o f height
1√

d−1
with radius

√
1− 1

d−1

=Vd−1(1−
1

d−1
)

d−1
2

1√
d−1

where Vd−1(1− 1
d−1 )

d−1 is the surface area of a ball of dimension d-1 with radius√
1− 1

d−1 and 1√
d−1

is the height.
Note:
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(1− 1
d−1

)
d−1

2 ≥ 1− (
d−1

2
)(

1
d−1

)

= 1− 1
2

=
1
2
.

Using if α ≥ 1 then (1− x)α ≥ 1−αx and that d ≥ 3, we have

vol(H)≥ Vd−1

2
√

d−1
.

Thus,

vol(A)
vol(H)

≤
Vd−1

c
√

d−1
e−

c2
2

Vd−1
2
√

d−1

=
2
c

e−
c2
2 .

4 Near orthogonality

Idea: 2 points drawn at random from Ud are almost orthogonal with high probability.

Theorem 3. Let x1, . . . ,xn be drawn at random from Ud ⊂Rd Then, with probability
1-O( 1

n ),

1. |xi| ≥ 1−2ln( n
d ) ∀i = 1, . . . ,n

2. |xi− x j| ≤
√

6ln(n)√
d−1

when i 6= j

Proof. (1): Recall,
vol(1− ε)A

vol(A)
≤ e−εd .

Choose ε = 2ln(n)
d then,

Prob(|xi|< 1− 2ln(n)
d

)≤ e−(
2ln(n)

d )d = n−2.

Using the prior bound,

P(|x1|< 1− 2ln(n)
d

or . . . or |xn|<
2ln(n)

d
)≤ 1/n.

It follows that

P(|xi|> 1− 2ln(n)
d

)≥ 1− 1
n
.
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(2): We are examining dot products xi · x j, i 6= j. There are
(n

2

)
such pairs. For

each pair, fix xi as the north pole. We use Theorem 2 with c =
√

6ln(n). This gives,

P(|xi · x j| ≤
√

6ln(n)
d−1

)≥ 1− 2√
6ln(n)

e−3ln(n)

= 1− 2√
6ln(n)

n−3.

Hence,

P(|xi · x j|>
√

6ln(n)
d−1

)<
2√

6ln(n)
n−3 = O(n−3)

for one point. This condition is violated with probability at most O(( n
2 )n
−3) =

O(n−1).

Remarks:
Using c = 2

√
ln(d) in Theorem 1, it gives that the fraction of the volume of the

ball satisfying |x1|> c√
d−1

=
2
√

ln(d)√
d−1

is at most 2
c e
−c2

2 = (. . .) = d−2√
ln(d)

< d−2. This

estimate holds for any of the coordinates, so that at most O(d−1) of the volume of

the ball is outside a cube of side length 2c√
d−1

= 4
√

ln(d)√
d−1

. Hence, the unit ball has
value at most twice the volume of the cube, that is,

vol(Ud)≥ (
16ln(d)

d−1
)

d
2 → 0 as d→ ∞.

We recover the result that vol(Ud)→ 0 as d→ ∞.

5 Relationship between a ball and cube in Rd

For large d, we expect to find most points of the unit ball Ud near the surface and at
the same time, within a cube of side length

O(
ln(d)
d−1

).

Note: on the surface of Ud a point satisfies

x2
1 + . . .+ x2

d = 1,

so that typically xi ≈ ± 1√
d

for each i. Therefore, a randomly drawn point from the

surface of Ud is of the form (± 1√
d
, . . . ,± 1√

d
). Look at the following figure from [1]

to get an idea for the relative geometry of Ud and a cube inside Ud .
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Fig. 4 Reprinted from Foundations of Data Science (p. 22), by A. Blum, J. Hopcroft and R. Kan-
nan, 2020, Cambridge: Cambridge University Press. Copyright 2020 by Cambridge University
Press.

6 Generating Points Uniformly at Random on the surface of a
sphere

In applications, it is useful to be able to generate points uniformly at random on
the surface of a sphere. The question is how to implement this. Let’s examine one
possible approach for the case when d = 2. To generate a point (x,y), we start by
generating x and y coordinates chosen uniformly at random from [−1,1] to form
the point (x,y). We repeat this process to get a collection of points that have been
generated random uniformly in [−1,1]. We then project these points onto the cir-
cumference where we discard points outside the disk since rays have nonuniform
length. By only keeping points inside the disk and projecting on the circumference,
we generate a collection of samples uniformly at random on the circumference of
the sphere.

What happens when d is large? The same idea does not work since the number
of points inside the sphere would be negligible and likely outside the boundary. We
need to use an alternative approach. Let x = (x1, . . . ,xn)∈Rd where each coordinate
xi is chosen independently from N (µ = 0,σ2 = 1). As a result,

x∼ spherically symmetric normal pd f with σ
2 = 1.

By normalization, the element x
|x| is a unit vector whose distribution is uniform over

the surface of Ud .
Remark:

• To generate a random number from a given pdf uniformly at random over [0,1],
let x = P−1(µ) where P is the cumulative distribution function.
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• To generate a point y uniformly at random over a unit ball, we need to scale a
point x

|x| on the surface of the sphere by a scalar ρ ∈ [0,1]. Clearly, ρ = ρ(r),

where r is the radius. For d=2, ρ(r) ∝ r. In general, for general d, ρ(r) ∝ rd−1.
Since the pdf has area 1,

1 =
∫ r=1

r=0
ρ(r)dr =

∫ r=1

r=0
crd−1dr

which implies c=d. Thus, ρ(r) = drd−1. In conclusion, to generate a point uni-
formly at random over a unit sphere, first generate x

|x| using the spherical Gaus-
sian pdf and then re-scale as y = ρ

x
|x| .

7 Spherically Symmetric Gaussian in High Dimensions

Let’s briefly compare the 1-dimensional Gaussian and the d-dimensional Gaussian
before going into the details. Recall for d=1,

ρ(x) =
1√

2πσ
e−

x2

2σ2 .

It is known that the area is concentrated near the origin.
In general for d dimensions,

ρσ (x) =
1

(2π)
d
2 σd

e−
|x|2

2σ2

has very little volume near the origin. In fact,
∫ 1

0 ρσ (x)dx, x ∈Rd is negligible for d
large. Some intuition as to why is to observe that,

E(|x|2) =
d

∑
i=1

E(|xi|2) = E(x2
i )d = σ

2d.

This shows that the mean square distance of a point from the origin is σ
√

d =
O(
√

d). In words, most of the points are about
√

d away from the origin where we
call
√

d the radius of the Gaussian.

Theorem 4 (Gaussian Annulus theorem). For a d-dimensional spherical Gaus-
sian with µ = 0, σ = 1, for any β ≤

√
d, we have∫

√
d−β≤|x|≤

√
d+β

ρσ (x)dx≥ 1−3e−cβ 2

for a fixed constant c > 0.

Proof. Let y = (y1, . . . ,yd) and r = |y|. If |r−
√

d|> β then
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|r2−d|= |r+
√

d||r−
√

d| ≥ (r+
√

d)β ≥ β
√

d (1)

Also, observe that

r2−d = y2
1 + . . .+ y2

d−d = (y2
1−1)+ . . .+(y2

d−1).

Set xi = y2
i −1 for each i ∈ {1, . . . ,d} then (1) becomes

|x1 + . . .+ xd | ≥ β
√

d.

Notice that,
E[xi] = E[y2

i −1] = E[y2]−1 = 0

The next step is to apply the following theorem which is a theorem about tail bounds.

Theorem 5. Let x = x1 + . . .+ xn where the xi are mutually independent random
variables with µ = 0, and variance at most σ2. Suppose a∈ [0,

√
2nσ2] and s≤ n σ2

2
is a positive even number and E[xr

i ]≤ σ2r! for r = 3, . . . ,s. Then,

P(|x1 + . . .+ xn| ≥ a)≤ (
2snσ2

a2 )
s
2 .

If, in addition, s≥ a2

4nσ2 then

P(|x1 + . . .+ xn| ≥ a)≤ 3e−
a2

12nσ2

Remark: The xi need not be i.i.d only independent. To apply this theorem, we need
to verify the bound on high order moments. Let s be a positive integer as above.

I f |yi| ≤ 1, then |xi|s ≤ 1.

I f |yi|> 1, then |xi|s ≤ |yi|2s.

Hence |xi|s ≤ 1+ y2s
i .

Let’s find an upper bound for |E[xs
i ]|,

|E[xs
i ]| ≤ E(1+ y2s

i ) = 1+E(yi2s)

= 1+
2
π

∫
∞

0
y2se−

y2
2 dy

≤ 2ss! [U pper Bound f or the Gamma integral]

Thus, |E[xr
i ]| ≤ 2rr! and E[x2

i ]≤ 222 = 8 = σ2. To get the right estimate to apply
the tail bounds theorem, we need to use a change of variables. Let wi =

xi
2 .

Now,
var(wi)≤ 2, E[ws

i ]≤ 2s!.

We can now apply the theorem to obtain a bound on
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P(|w1 + . . .+wd | ≥
β
√

d
2

).

We derive that this bound is satisfied with probability less than or equal to 3e−
β2
96 .

8 Random Projections

The material in this section is useful in nearest neighbor search algorithms.
Problem: We want to match a query point in Rd to a database.
For example, in facial recognition. This high dimensional problem can be compu-
tationally time consuming. To speed up the comparison, it is convenient to reduce
the dimensionality of the problem. One thing to keep in mind is it is important to
maintain the geometry when we reduce the dimensionality of the problem. That is,
if points were close in Rd then the points should be close in Rk. We consider the
following approach. Let u1, . . . ,uk be independent random vectors in Rd drawn from
the spherical Gaussian: (2π)−

d
2 exp(− |x|

2

2 ), σ2 = 1.

Definition 1. For any v ∈ Rd , we define the random projection f : Rd → Rk by

f (v) = (u1 · v, . . . ,uk · v).

Claim. With high probability | f (v)| ≈
√

k|v|.

It follows that if we want to measure |v1− v2|, we can compute | f (v1)− f (v2)| =
| f (v1− v2)|=

√
k|v1− v2| The following theorem makes the claim precise.

Theorem 6 (Random Projection Theorem). Let v ∈Rd and f be defined as above.
Then ∃c > 0 s.t for any ε ∈ (0,1),

P(| f (v)−
√

k|v|| ≥ ε
√

k|v|)≤ 3e−ckε2

where the probability is taken over the random draws of the vectors ui.

Proof. We can divide both sides of the inequality inside P(·) by |v|. Hence, we can
assume |v|= 1. Observe that for each i = 1, . . . ,k

ui · v =
d

∑
j=1

ui jv j

Each ui j has zero mean, hence ui · v has zero mean. Since each ui j has variance 1,
the variance of ui jv j is v2

j . It follows that

var(ui− v) = ∑v2
j = |v2|= 1.

Since u1, . . . ,uk are independent, we can apply the Gaussian Annulus Theorem with
β = ε

√
k. This completes the proof.
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