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Linear Transformations, null spaces,
and ranges

Section 2.1
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Linear transformations

Definition

Let V, W be vector spaces over the same field F. We call a function
T : V — W a linear transformation from V to W if

QO Vx,ye V:T(x+y)=T(x)+ T(y)
Q@ Vce F,vxe V: T(cx)=cT(x)

Remark: We can say T is linear, for short.
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Show that T is linear:

T : R2 —> R2, T(al,ag) = (231 + 32,31)
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Show that T is linear:

T : Rs — RY, T(al,ag, as, ds, 35) = (31, 82,0, 34,0,0,31)
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Show that T is linear:
df

T: C%(R) = C(R), T(F) =
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Show that T is linear:
T Muxn = Moxm, T(A) = AT
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Show that T is linear:
T Muxn = Moxm, T(A) = AT

Need to show that:
T(aA) =aT(A)
T(A+B)=aT(A)+ T(B)
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Properties of linear transformation

o T(x—y)=T(x)— T(y)

© T(avi+...4+apvy) =a1T(vi)+...+anT(vp)
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Null Space

Definition
LetV, W be vector spaces. Let T : V — W be linear.
The null space (or kernel) of T is the set

N(T)={xeV : T(x)=0}c V.

The range of T is the set

R(T)={T(x) : xe V}cCW.
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Let T:R3 — R?, T(a1,a2,a3) = (a1 — a0,2a3).
Find null space and range.
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Let T:R3 — R?, T(a1,a2,a3) = (a1 — a0,2a3).
Find null space and range.

SOLUTION:

N(T) = {X S R3 : T(al, an, 83) = (31 — 32,233) = 0}
This give the condition a3 — 0 and a; = ap.
This implies that dim N(T) = 1.
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Let T:R3 — R?, T(a1,a2,a3) = (a1 — a0,2a3).
Find null space and range.

SOLUTION:

N(T) = {X S R3 : T(al, an, 83) = (31 — 32,233) = 0}
This give the condition a3 — 0 and a; = ap.
This implies that dim N(T) = 1.

R(T)={T(x): x e R’}
You can show that R(T) = R2.
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Let V, W be vector spaces and T : V — W linear. Then
© N(T) is a subspace of V
@ R(T) is a subspace of W

Proof. Use definition of subspace.
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Another theorem

Let V, W be vector spaces and T : V — W linear. Let {vi,...,v,} be a
basis for V. Then

R(T) =span{T(v1),..., T(vn)}.

Proof.
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Another theorem

Let V, W be vector spaces and T : V — W linear. Let {vi,...,v,} be a
basis for V. Then

R(T) =span{T(v1),..., T(vn)}.

Proof. For any v € V, there are constants cy, ..., ¢, such that

n
vV = Z Ci Vi
i=1
By linearity,
n n
TW)=TO avi)=>_cT(v)
i=1 i=1

Hence,
R(T) =span{T(v1),..., T(vn)}.
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Another theorem

Remark.

The theorem below shows that we can represent the span of R(T) using a
basis {v1,...,v,} of V.

However, this does not imply that {T(v1),..., T(v,)} is a basis of R(T).

Let V, W be vector spaces and T : V — W linear. Let {v1,...,v,} be a
basis for V. Then

R(T) =span{T(v1),..., T(vp)}.
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Find a basis for R(T) when

T:R3 > RS, T(a1,a2,a3) = (a1 — 2a2, a2 + a3, 2a;1 + a2 + 5a3)
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Find a basis for R(T) when

T:R3 > RS, T(a1,a2,a3) = (a1 — 2a2, a2 + a3, 2a;1 + a2 + 5a3)

SOLUTION. Let {er, e2, e3} be the canonical basis of R3.
By the theorem above,

{T(el)a T(e2)7 T(e3)} = {(L 0, 2)7 (_27 L 1)7 (07 L 5)}

spans R(T).

Note that 2(1,0,2) + (—2,1,1) = (0,1,5), so the 3 vectors are |.d.,
showing that they do not form a basis of R(T).

However, {(1,0,2),(—2,1,1)} are l.i. vectors spanning R(T), hence they
form a basis of R(T).
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Nullity and Rank

Definition

Let V, W be vector spaces and T : V — W be linear. If N(T),R(T) are
finite dimensional, then let

nullity(T) =dim N(T), rank(T)=dimR(T).
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Dimension Theorem

Dimension Theorem

Let V, W be vector spaces and T : V — W be linear. If V' is
finite-dimensional, then

nullity(T) + rank(T) = dim V.

Proof. Let {v1,..., vk} be a basis for N(T) C V, hence, nullity(T) = k.
By the Replacement theorem, we can find additional |.i. vectors
{Vk41,-.-,Vn} such that {vi,...,v,} is a basis for V, where dim(V) = n.
For any v € V, we can write
n
vV = Z a;Vv;
i=1

and, by linearity

D. Labate (UH) MATH 4377 17/36



Dimension Theorem

Since T(v;) =0, when i =1,...,k, then

T(v) € span{T(vk+1),-.., T(va)} and R(T) = span{vk41,...,Vn}.
We need to show that the set { T(vk41),..., T(vy)} is Li., so that it as
basis of R(T).

Suppose cx+1 T (V1) + ...+ cnT(vy) =0.

This implies that T(ck4+1Vk+1 + ...+ cava) =0, so that

Ck+1Vkt1 + ...+ cavn € N(T).
Since {v1,..., vk} is a basis for N(T), we can write

Ck+1Vk41 + ...+ Cpvp=aivi + ... + ckvk

which implies

avi+ ...+ akVk — Ck41Vk+1 — --- — CaVp =0
Since {vi,...,v,} is a basis, the above equation implies that all
coefficients a1, ...,ax and ck11,. ..,y are 0, showing that

{T(vk+1),-.-, T(vp)} is Li. This also implies that dimR(T) = n — k.
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Let V, W vector spaces. Let T : V — W linear. Then T is one-to-one if
and only if N(T) = {0}.

Proof for = Assume T is one-to-one. Since T is linear T(0) = 0.
Suppose we also have that T(x) = 0 for some x € V.
Since T is one-to-one, T(x) = T(0) implies x =0. Thus, N(T) = {0}.

Proof for <= Assume N(T) = {0}. For any x,y € V, suppose

T(x) = T(y), which is equivalent to T(x — y) = 0. Since N(T) = {0},
the last equation implies that x — y = 0. This shows that T(x) = T(y)
implies x = y, hence T is one-to-one.
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Let V, W vector spaces with dim V = dim W (both finite!). Let
T : V — W linear. Then the following are equivalent:

© T is one-to-one
@ T isonto
Q@ rank T =dimV

Proof (1) < (3). T is one-to-one if and only if nullity(T) = 0 Thus, by
the Dimension Theorem, using the hypothesis that dim V = dim W, the
statement that T is one-to-one is also equivalent to rank T = dim V.
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We have seen the following linear T
T :R? - R? T(a1,a) = (2a1 + a2, a1)

Is T one-to-one? Is T onto?
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We have seen the following linear T

T:R? 5 R2 T(ay,a) = (2a1 + a, a1)

Is T one-to-one? Is T onto?

To check T one-to-one, we can verify that N(T) = {0}
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We have seen the following linear T
T :R? - R? T(a1,a) = (2a1 + a2, a1)

Is T one-to-one? Is T onto?

To check T one-to-one, we can verify that N(T) = {0}

Since T one-to-one and dimV = dimW, by previous theorem, T onto.
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e If T:V — W linear and dim V < dim W, then T cannot be onto.
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e If T:V — W linear and dim V < dim W, then T cannot be onto.

By the Dimension Theorem: dim V — dim N(T) = dim R(T)
If dim V' < dim W, then dim R(T) > dim V, then T cannot be onto
by theorem above.

@ If T:V — W linear and dim V > dim W, then T cannot be
one-to-one.
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e If T:V — W linear and dim V < dim W, then T cannot be onto.

By the Dimension Theorem: dim V — dim N(T) = dim R(T)
If dim V' < dim W, then dim R(T) > dim V, then T cannot be onto
by theorem above.

@ If T:V — W linear and dim V > dim W, then T cannot be
one-to-one.
By the Dimension Theorem: dim V —dim R(T) = dim N(T)
If dim W < dim V/, then necessarily dim N(T) > 1, hence T cannot
be one-to-one.
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Consider the linear transformation:
T Pa(R) = Ps(R), T(p(x)) = 20(x) + / p(t)dt
0

(1) Is T onto? (2) Is T one-to-one?
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Consider the linear transformation:
T Pa(R) = Ps(R), T(p(x)) = 20(x) + / p(t)dt
0

(1) Is T onto? (2) Is T one-to-one?

(1) dim(P2(R)) = 3 and dim(P3(R)) = 4.
Thus by above remark T is not onto.
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Consider the linear transformation:
T Pa(R) = Ps(R), T(p(x)) = 20(x) + / p(t)dt
0

(1) Is T onto? (2) Is T one-to-one?

(1) dim(P2(R)) = 3 and dim(P3(R)) = 4.
Thus by above remark T is not onto.

(2) We compute N(T) ={p € P>: T(p) = 0}.
Direct calculation shows that N(T) = {0}), hence T one-to-one.
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Let V, W vector spaces. Let {vi,...,v,} be a basis for V. Let
Wi,...,W, be a list of arbitrary vectors in W. Then there exists a unique
T :V — W linear such that T(v;) =w; foralli=1,...,n.
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Let V, W vector spaces. Let {vi,...,v,} be a basis for V. Let
Wi,...,W, be a list of arbitrary vectors in W. Then there exists a unique
T :V — W linear such that T(v;) =w; foralli=1,...,n.

Proof.
For any v € V, we can write

n
vV = E aj Vi
i=1

and the expansion is unique.
By linearity, with the notation w; = T(v;),

TV =T aiv)=> aT(vi)=) aW,.
i=1 i=1 i—1

This representation is also unique.
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Corollary

Let V, W vector spaces. Let U, T : V — W linear with U(v;) = T(v;) on
a basis {vi,...,v,} for V. Then U=T.

This follows directly from the theorem.
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The Matrix Representation of a
Linear Transformation

Section 2.2
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Ordered basis

Definition

Let V be a finite dimensional vector space. An ordered basis for V is a
basis endowed with a specific order.

Ex: ordered bases
p1 =1{(1,0,0),(0,1,0),(0,0,1)},

/82 = {(07 1’ 0)7 (1’ 07 0)7 (07 O’ 1)}

are different!
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Coordinate vector

Let 8 = {u1,...,u,} ordered basis for V. We saw earlier:

Vx eV, dlay,...,a,: x =a1us + ...+ apu,.

Write
[x]g = (a1, .,an)

for the coordinate vector of x relative to 3.

Ex: Find coordinate vector of x = (3,2, 5) relative to

6 =1{(0,1,0),(1,0,0),(0,0,1)}.
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Coordinate vector

Let 8 = {u1,...,u,} ordered basis for V. We saw earlier:

Vx eV, dlay,...,a,: x =a1us + ...+ apu,.

Write
[x]g = (a1, .,an)

for the coordinate vector of x relative to 3.

Ex: Find coordinate vector of x = (3,2, 5) relative to
8 =1{(0,1,0),(1,0,0),(0,0,1)}.
SOLUTION:
(3,2,5) =2(0,1,0) 4 3(1,0,0),5(0,0,1)

Hence [x|3 = (2,3,5).
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Matrix representation of T

Let T:V — W linear.
Let 8 = {vi,...,v,}, be a basis for V and v = {wy,...,wp,} a basis for
w.
Write

m

T(vj) = Zaijwi forj=1,....n

i=1

We call the matrix (aj;) the matrix representation of T with respect to 3

and 7 and denote it by [T]}.
Notice that the j-th column of the matrix representation is [T (v;)],

Particular case: when V = W and 8 = ~, we denote the matrix
representation by [T]3.
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Let T : R2 — R3 be given by
T(a1,a2) = (a1 + 3a2,0,2a; — 4ay).

Write [T]; with 3 = {(1,0),(0,1)} and v = {(1,0,0),(0,1,0), (0,0,1)}.
(standard bases)
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Let T : R2 — R3 be given by

T(a1,a2) = (a1 + 3a2,0,2a; — 4ay).
Write [T]g’ with 8 = {(1,0),(0,1)} and v = {(1,0,0),(0,1,0), (0,0,1)}.
(standard bases)

SOLUTION:

T(v) = (1,0,2) = 1(1,0,0) + 0(0, 1,0) + 2(0,0,1), — [T (v)], = (0

) —
N————

3
T(V2) = (3703 *4) = 3(17070) + 0(07 170) - 4(0707 ]-)a*> [T(V2)]’Y = 0 )

1 3
Hence [T]; =0 0
2 —4
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Let T : R? — RR3 be given by
T(al, ag) = (31 + 3a,0,2a; — 482).

Write [T]] with 8 = {(1,0),(0,1)} and 5 = {(0,1,0),(1,0,0), (0,0,1)}.
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Let T : R? — RR3 be given by
T(al, az) = (31 + 3a,0,2a; — 482).

Write [T]] with 8 = {(1,0),(0,1)} and 5 = {(0,1,0),(1,0,0), (0,0,1)}.
SOLUTION: )

0
T(w) =(3,0,—4) =0(0,1,0) + 3(1,0,0) — 4(0,0,1), = [T(w)], = ( 3 )

4
0 O

Hence [T]; = |1 3
2 —4
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T(v1) =(1,0,2) =0(0,1,0) +1(1,0,0) +2(0,0,1), = [T(w)], = (

N = O
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Let T :R? — RR3 be given by
T(al, 32) = (31 + 3a,0,2a1 — 432).

Write [T]} with 3 =1{(0,1),(1,0)} and v = {(1,0,0), (0, 1,0), (0,0,1)}.
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Let T :R? — RR3 be given by
T(al, 32) = (31 + 3a,0,2a1 — 432).

Write [T} with 3 =1{(0,1),(1,0)} and v = {(1,0,0), (0, 1,0), (0,0,1)}.
SOLUTION:

3
T(u1) = (3,0, —4) = 3(1,0,0) + 0(0, 1,0) — 4(0,0,1), = [T(w)], = ( 0 )
—4
1
0
2

T(uw)=(1,0,2) =1(1,0,0) 4+ 0(0,1,0) + 2(0,0,1), = [T(w»)], = (

3
Hence [T]) = (0 )

N O

4
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Let T : R2 — R3 be given by
T(al, az) = (31 + 3a,0,2a; — 432).

Write [T]% with 8 = {(1,0),(0,1)} and § = {(1,1,0), (0, 1,1), (2,2,3)}.
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Let T : R2 — R3 be given by
T(al, a2) = (31 + 3a,0,2a; — 482).

Write [T]% with 8 = {(1,0),(0,1)} and § = {(1,1,0), (0, 1,1), (2,2,3)}.

SOLUTION: T(v1) = (1,0,2) = a1(1,1,0) + a»(0,1,1) + a3(2,2,3) =
(a1 + 2a3, a1 + ap + 2a3, 3, + 3a3)

1
T(V2) = (37 0’ 74) = b1(17 ]-a 0) + b2(03 13 1) + b3(2a 25 3) =
(b1 + 2bs, by + by + 2b3, by + 3b3)

-1
By solving the linear system we obtain — [T (v1)], = 1)

11/3
By solving the linear system we obtain — [T(v2)], = ( -3 )

-1/3
1 11/3
Hence [T]) = (—1 -3 )
1 -1/3
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Sum and scalar multiplication for linear transfirmations

Definition
Let U:V - Wand T :V — W be linear. Then

(U+ T)(x) = U(x) + T(x)

and
(cT)(x) = cT(x).
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Let V, W be given vector spaces. The set of all linear transformations
V — W is a vector space with + and - defined as above.
Write £(V, W) for this vector space.

Proof
Check the properties in the definition of vector space
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Let U, T : V — W linear. Then
O [U+ Tl =[Ul;+([T]}
@ [aT]} = a[T]}
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Let U, T : V — W linear. Then
O [U+ Tl =[Ul;+([T]}
@ [aT]} = a[T]}

Proof for (1):
(U+ T)(VJ) = U(VJ + T(VJ ZaUW/ + ZbUW, ZC,'J'W,',
i=1

where cjj = ajj + bjj, showing that [U + T]g = (cij).
Hence [U + T]g = [U]g + [T]g

Proof of (2) is similar.
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