Linear Algebra Review and Matlab Tutorial

Assigned Reading:

•Eero Simoncelli "A Geometric View of Linear Algebra" http://www.cns.nyu.edu/~eero/NOTES/geomLinAlg.pdf

Background Material

A computer vision "encyclopedia": <u>CVonline</u>.

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Linear Algebra:

- Eero Simoncelli "A Geometric View of Linear Algebra" http://www.cns.nyu.edu/~eero/NOTES/geomLinAlg.pdf
- Michael Jordan slightly more in depth linear algebra review http://www.cs.brown.edu/courses/cs143/Materials/linalg_jordan_86.pdf
- Online Introductory Linear Algebra Book by Jim Hefferon. <u>http://joshua.smcvt.edu/linearalgebra/</u>

Notation	
 Standard math textbook notation Scalars are italic times roman: 	n, N
 Vectors are bold lowercase: Row vectors are denoted with a transpose: 	\mathbf{x} \mathbf{x}^{T}
 Matrices are bold uppercase: 	М
Tensors are calligraphic letters:	\mathcal{T}

Overview Vectors in R² Scalar product Outer Product Bases and transformations Inverse Transformations Eigendecomposition Singular Value Decomposition

Warm-up: Vectors in Rⁿ

- We can think of vectors in two ways:
 Points in a multidimensional space with respect to some
 - coordinate system
 translation of a point in a multidimensional space
 ex., translation of the origin (0,0)

Scalar Product

Notation

$$\langle \mathbf{x}, \mathbf{y} \rangle$$

 $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

 We will use the last two notations to denote the dot product

Bases and Transformations

- We will look at:
 - Linear Independence
 - Bases
 - Orthogonality
 - Change of basis (Linear Transformation)
 - Matrices and Matrix Operations

Linear Dependence

Linear combination of vectors x₁, x₂, ... x_n

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \dots + c_n\mathbf{X}_n$$

A set of vectors X={x₁, x₂, ..., x_n} are linearly dependent if there exists a vector x_i ∈ X that is a linear combination of the rest of the vectors.

Linear Dependence

In Rⁿ

- sets of n+1vectors are always dependent
- there can be at most n linearly independent vectors

Bases

- A basis is a linearly independent set of vectors that spans the "whole space". ie., we can write every vector in our space as linear combination of vectors in that set.
- Every set of n linearly independent vectors in Rⁿ is a basis of Rⁿ
- A basis is called
 - orthogonal, if every basis vector is orthogonal to all other basis vectors
- orthonormal, if additionally all basis vectors have length 1.

Bases

Standard basis in Rⁿ is made up of a set of unit vectors:

$$\hat{\mathbf{e}}_1 = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix}, \ \hat{\mathbf{e}}_2 = \begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}, \ \cdots \ \hat{\mathbf{e}}_n = \begin{pmatrix} 0\\0\\0\\\vdots\\1 \end{pmatrix}$$

We can write a vector in terms of its standard basis:

$$\begin{pmatrix} 4 \\ 7 \\ -3 \end{pmatrix} = 4 \hat{\mathbf{e}}_1 + 7 \hat{\mathbf{e}}_2 - 3 \hat{\mathbf{e}}_3$$

 Observation: -- to find the coefficient for a particular basis vector, we project our vector onto it.

 $x_i = \hat{\mathbf{e}}_i \cdot \mathbf{x}$

Rank of a MatrixThe rank of a matrix is the number of linearly independent rows or columns.Examples: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has rank 2, but $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ only has rank 1.Equivalent to the dimension of the range of the linear transformation.A matrix with full rank is called *non-singular*, otherwise it is singular.

Matrix Inverse

A linear transformation can only have an inverse, if the associated matrix is non-singular.

The inverse \mathbf{A}^{-1} of a matrix \mathbf{A} is defined as:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \quad (= \mathbf{A}\mathbf{A}^{-1})$$

We cannot cover here, how the inverse is computed. Nevertheless, it is similar to solving ordinary linear equation systems.

Some matrix properties

Matrix multiplication $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}.$

For orthonormal matrices it holds that $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$.

For a diagonal matrix $\mathbf{D} = \text{diag}\{d_1, \dots, d_n\}$:

 $\mathbf{D}^{-1} = \text{diag}\{d_1^{-1}, \dots, d_n^{-1}\}$