Linear Algebra Review and Matlab Tutorial

Assigned Reading:
-Eero Simoncelli "A Geometric View of Linear Algebra"
http://www.cns.nyu.edu/-eero/NOTES/geomLinAlg.pdf

Background Material

- A computer vision "encyclopedia": $\underline{\text { CVonline }}$
http://homepages.inf.ed.ac.uk/rbf/CVonline/
- Linear Algebra:
- Eero Simoncelli "A Geometric View of Linear Algebra" http://www.cns.nyu.edu/~eero/NOTES/geomLinAlg.pdf
- Michael Jordan slightly more in depth linear algebra review http://www.cs.brown.edu/courses/cs143/Materials/linalg jordan 86.pdf
- Online Introductory Linear Algebra Book by Jim Hefferon. http://joshua.smcvt.edu/linearalgebra/

Notation

. Standard math textbook notation

- Scalars are italic times roman:
- Vectors are bold lowercase:
- Row vectors are denoted with a transpose:
- Matrices are bold uppercase: M
- Tensors are calligraphic letters:

Warm-up: Vectors in \mathbb{R}^{n}

- We can think of vectors in two ways:
- Points in a multidimensional space with respect to some coordinate system
- translation of a point in a multidimensional space ex., translation of the origin $(0,0)$

Overview

- Vectors in R^{2}
- Scalar product
- Outer Product
- Bases and transformations
- Inverse Transformations
- Eigendecomposition
- Singular Value Decomposition

Vectors in R^{n}

- Notation:

$$
\mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}
$$

- Length of a vector:

$$
\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Dot product or scalar product

- Dot product is the product of two vectors
- Example:

$$
\mathbf{x} \cdot \mathbf{y}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}=s
$$

- It is the projection of one vector onto another

$\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$

Scalar Product

- Commutative:
$\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
- Distributive:
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
- Linearity

$$
\begin{gathered}
(c \mathbf{x}) \cdot \mathbf{y}=c(\mathbf{x} \cdot \mathbf{y}) \\
\mathbf{x} \cdot(c \mathbf{y})=c(\mathbf{x} \cdot \mathbf{y}) \\
\left(c_{1} \mathbf{x}\right) \cdot\left(c_{2} \mathbf{y}\right)=\left(c_{1} c_{2}\right)(\mathbf{x} \cdot \mathbf{y})
\end{gathered}
$$

- Non-negativity:

$$
\forall \mathbf{x} \neq 0:\langle\mathbf{x}, \mathbf{x}\rangle>0 \quad\langle\mathbf{x}, \mathbf{x}\rangle=0 \Leftrightarrow \mathbf{x}=0
$$

- Orthogonality:

$$
\forall \mathbf{x} \neq 0, \mathbf{y} \neq 0 \quad \mathbf{x} \cdot \mathbf{y}=0 \Leftrightarrow \mathbf{x} \perp \mathbf{y}
$$

Scalar Product

- Notation

$$
\begin{aligned}
& \langle\mathbf{x}, \mathbf{y}\rangle \\
& \mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
\end{aligned}
$$

- We will use the last two notations to denote the dot product

Norms in R^{n}

- Euclidean norm (sometimes called 2-norm):

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- The length of a vector is defined to be its (Euclidean) norm.
- A unit vector is of length 1.
- Non-negativity properties also hold for the norm:

$$
\forall \mathrm{x} \neq 0:\|\mathrm{x}\|^{2}>0 \quad \quad\|\mathrm{x}\|^{2}=0 \Leftrightarrow \mathrm{x}=0
$$

Linear Dependence

- Linear combination of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{n}$

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}
$$

- A set of vectors $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{n}\right\}$ are linearly dependent if there exists a vector $\mathbf{x}_{i} \in X$
that is a linear combination of the rest of the vectors.

Linear Dependence

- $\ln \mathrm{R}^{\mathrm{n}}$
- sets of $n+1$ vectors are always dependent
- there can be at most n linearly independent vectors

Bases (Examples in \mathbb{R}^{2})

Bases

- A basis is a linearly independent set of vectors that spans the "whole space". ie., we can write every vector in our space as linear combination of vectors in that set.
- Every set of n linearly independent vectors in R^{n} is a basis of R^{n}
- A basis is called
- orthogonal, if every basis vector is orthogonal to all other basis vectors
- orthonormal, if additionally all basis vectors have length 1 .

Change of basis

- Suppose we have a new basis $\mathbf{B}=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right] \quad, \mathbf{b}_{i} \in \mathbb{R}^{m}$ and a vector $\mathbf{x} \in \mathbb{R}^{m}$ that we would like to represent in terms of \mathbf{B}

- Compute the new components
- When B is orthonormal
$\widetilde{\mathbf{x}}$ is a projection of \mathbf{x} onto \mathbf{b}_{i}
Note the use of a dot product

Outer Product

$\mathbf{x} \circ \mathbf{y}=\mathbf{x} \mathbf{y}^{T}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]\left[\begin{array}{lll}y_{1} & y_{m}\end{array}\right]=\mathbf{M}$

- A matrix M that is the outer product of two vectors is a matrix of rank 1.

Matrix Multiplication - dot product

- Matrix multiplication can be expressed using dot products

Rank of a Matrix

The rank of a matrix is the number of linearly independent rows or columns.
Examples: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has rank 2, but $\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$ only has rank 1.
Equivalent to the dimension of the range of the linear transformation.

A matrix with full rank is called non-singular, otherwise it is singular.

Matrix Multiplication - outer product

- Matrix multiplication can be expressed using a sum of outer products
$\mathbf{B A}=\left[\bigcap_{1} \cdots \mathbf{b}_{n}\right]\left[\begin{array}{c}\mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T}\end{array}\right]$
$=\mathbf{b}_{1} \mathbf{a}_{1}^{T}+\mathbf{b}_{2} \mathbf{a}_{2}^{T}+\cdots \mathbf{b}_{n} \mathbf{a}_{n}^{T}$
$=\sum_{i=1}^{n} \mathbf{b}_{i} \circ \mathbf{a}_{i}$

Singular Value Decomposition:

D=USV ${ }^{\top}$

- A matrix $\mathbf{D} \in \mathbb{R}^{\mathrm{I}_{1} \times \mathrm{I}_{2}}$ has a column space and a row space
- SVD orthogonalizes these spaces and decomposes D

$$
\begin{array}{ll}
\mathbf{D}=\mathbf{U S V}^{T} & (\mathbf{U} \text { contains the left singular vectors/eigenvectors) } \\
(\mathbf{V} \text { contains the right singular vectors/eigenvectors) }
\end{array}
$$

- Rewrite as a sum of a minimum number of rank-1 matrices

$$
\mathbf{D}=\sum_{r=1}^{R} \quad \sigma_{r} \mathbf{u}_{r} \circ \mathbf{V}_{r}
$$

Matrix Inverse

A linear transformation can only have an inverse, if the associated matrix is non-singular.

The inverse A^{-1} of a matrix A is defined as:

$$
\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I} \quad\left(=\mathrm{AA}^{-1}\right)
$$

We cannot cover here, how the inverse is computed.
Nevertheless, it is similar to solving ordinary linear equation systems.

Some matrix properties

Matrix multiplication $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$.
For orthonormal matrices it holds that $\mathbf{A}^{-1}=\mathbf{A}^{\top}$.
For a diagonal matrix $\mathbf{D}=\operatorname{diag}\left\{d_{1}, \ldots, d_{n}\right\}$:

$$
\mathbf{D}^{-1}=\operatorname{diag}\left\{d_{1}^{-1}, \ldots, d_{n}^{-1}\right\}
$$

