Name:

HOMEWORK #1

(1) Expose the fallacy of the following argument. Let $f \in L^2(\mathbb{R})$. By the properties of the Haar wavelet expansion we have that

$$f(x) = \sum_{j,k \in \mathbb{Z}} \langle f, H_{j,k} \rangle H_{j,k}(x).$$

Integrating on both sides

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} \sum_{j,k \in \mathbb{Z}} \langle f, H_{j,k} \rangle H_{j,k}(x) dx$$
$$= \sum_{j,k \in \mathbb{Z}} \langle f, H_{j,k} \rangle \int_{\mathbb{R}} H_{j,k}(x) dx = 0$$

Hence every $f \in L^2(\mathbb{R})$ should satisfy $\int_{\mathbb{R}} f(x) dx = 0$. (Hint: The fallacy has nothing to do with f. We might even assume that $f \in L^1$ and the same observation would hold.)

(2) Let $\{\phi_k : k \in \mathbb{Z}\}$ be an ON system for $L^2(\mathbb{R})$. Prove that $\{\phi_k : k \in \mathbb{Z}\}$ is an ONB for $L^2(\mathbb{R})$ if and only if $f \in \overline{\operatorname{span}}\{\phi_k : k \in \mathbb{Z}\}$

3) Suppose that the function f on \mathbb{R} is Hölder continuous with exponent $\alpha, 0 < \alpha \leq 1$ on \mathbb{R} ; that is, there is a constant C > 0 such that

$$|f(x) - f(y)| \le C |x - y|^{\alpha}$$

for all $x, y \in \mathbb{R}$. Show that $\langle f, H_{j,k} \rangle$ exists for all $j, k \in \mathbb{Z}$ and satisfies

$$|\langle f, H_{j,k} \rangle| \le C \, 2^{-j(\alpha+1/2)}.$$