$\underline{\text { Homework \#1 }}$

You must justify all steps to get credit for your work
Please submit the HW via CASA or email your completed assignment as a single PDF file to jshi24@CougarNet.UH.EDU.
(1) [3Pts] Consider the differential equation

$$
y^{\prime \prime}-16 y=0
$$

Is any of the following functions a solution for the differential equation?
(a). $y=\sin 4 x$, (b). $y=\sinh 4 x$, (c). $y=e^{-4 x}$

Solution. (a). 1. From the expression of $y=\sin 4 x$, we compute

$$
y^{\prime}=4 \cos 4 x, y^{\prime \prime}=-16 \sin 4 x
$$

2. Substitute into the left-hand side of ODE:

$$
-16 \sin 4 x-16 \sin 4 x=-32 \sin 4 x
$$

3. Since the result is DIFFERENT from the right-hand side of ODE, then $y=\sin 4 x$ is NOT a solution.
(b). 1. From the expression of $y=\sinh 4 x$, we compute

$$
y^{\prime}=4 \cosh 4 x, y^{\prime \prime}=16 \sinh 4 x
$$

2. Substitute into the left-hand side of ODE:

$$
16 \sinh 4 x-16 \sinh 4 x=0
$$

3. Since the result matches the right-hand side of ODE, then $y=\sinh 4 x$ is a solution.
(c). 1. From the expression of $y=e^{-4 x}$, we compute

$$
y^{\prime}=-4 e^{-4 x}, y^{\prime \prime}=16 e^{-4 x}
$$

2. Substitute into the left-hand side of ODE:

$$
16 e^{-4 x}-16 e^{-4 x}=0
$$

3. Since the result matches the right-hand side of ODE, then $y=e^{-4 x}$ is a solution.
(2) [3Pts] Find the real numbers r such that $y=e^{r x}$ is a solution of

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

Solution. 1. From the expression of $y=e^{r x}$, we compute

$$
y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}
$$

2. Substitute into the left-hand side of ODE:

$$
r^{2} e^{r x}-6 r e^{r x}+9 e^{r x}=0 .
$$

3. For the equation to be 0 for all x, it must be $r^{2}-6 r-9=0$. Hence it must be $r=3$.
(3)[3Pts] Verify that $y=c_{1} e^{2 x}+c_{2} e^{-3 x}$ is the general solution of $y^{\prime \prime}+y^{\prime}-6 y=0$ and find the solution of the IVP with initial conditions $y(0)=1, y^{\prime}(0)=1$.

Solution. $y^{\prime \prime}+y^{\prime}-6 y=0$ is a second-order homogeneous linear ODE with constant coefficients. We write the characteristic equation

$$
r^{2}+r-6=0 .
$$

The roots are $r_{1}=-3$ and $r_{2}=2$. We are in the situation of 2 distinct real roots. Thus the general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x} .
$$

From the expression of $y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$, we compute

$$
y^{\prime}(x)=2 c_{1} e^{2 x}-3 c_{2} e^{-3 x} .
$$

By $y(0)=1$ and $y^{\prime}(0)=1$, we have

$$
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ 2 c _ { 1 } - 3 c _ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=\frac{4}{5} \\
c_{2}=\frac{1}{5}
\end{array}\right.\right.
$$

(4) [3Pts] Find the general solution of

$$
y^{\prime}-4 y=e^{-x}
$$

Solution. 1. We identify

$$
p(x)=-4, q(x)=e^{-x} .
$$

2. We compute the integrating factor

$$
h(x)=\int p(x) d x=-4 x .
$$

3. We write the general solution

$$
\begin{aligned}
y(x) & =e^{-h(x)} \int e^{h(x)} q(x) d x+C e^{-h(x)} \\
& =e^{4 x} \int e^{-5 x} d x+C e^{4 x} \\
& =-\frac{1}{5} e^{-x}+C e^{4 x} .
\end{aligned}
$$

(5)[4Pts] Find the general solution of

$$
x^{2} y^{\prime}+5 x y=x^{-3} \cos (3 x)
$$

Solution. 1. We write the ODE as $y^{\prime}+\frac{5}{x} y=\frac{\cos (3 x)}{x^{5}}$ and identify

$$
p(x)=\frac{5}{x}, q(x)=\frac{\cos (3 x)}{x^{5}} .
$$

2. We compute the integrating factor

$$
h(x)=\int p(x) d x=\int \frac{5}{x} d x=\ln x^{5} .
$$

3. We write the general solution

$$
\begin{aligned}
y(x) & =e^{-h(x)} \int e^{h(x)} q(x) d x+C e^{-h(x)} \\
& =x^{-5} \int \cos 3 x d x+C x^{-5} \\
& =\frac{1}{3} x^{-5} \sin 3 x+C x^{-5} .
\end{aligned}
$$

(6)[4Pts] Find the general solution of

$$
x y^{\prime}-y=\frac{5}{2} x \ln x
$$

Solution. 1. We write the ODE as $y^{\prime}-\frac{1}{x} y=\frac{5}{2} \ln x$ and identify

$$
p(x)=-\frac{1}{x}, q(x)=\frac{5}{2} \ln x .
$$

2. We compute the integrating factor

$$
h(x)=\int p(x) d x=\int \frac{1}{x} d x=-\ln x .
$$

3. We write the general solution

$$
\begin{aligned}
y(x) & =e^{-h(x)} \int e^{h(x)} q(x) d x+C e^{-h(x)} \\
& =\frac{5}{2} x \int \frac{\ln x}{x} d x+C x \\
& =\frac{5}{4} x \ln ^{2} x+C x .
\end{aligned}
$$

