Homework \#2

You must justify all steps to get credit for your work
Please submit the HW via CASA or email your completed assignment as a single PDF file to jshi24@CougarNet.UH.EDU.
(1)[4Pts] Find the general solution and solve the following IVP

$$
6 y^{\prime}-2 y=x y^{4}, \quad y(0)=-2
$$

First get the differential equation in the proper form and then write down the substitution.

$$
6 y^{-4} y^{\prime}-2 y^{-3}=x \quad \Rightarrow \quad v=y^{-3}, \quad v^{\prime}=-3 y^{-4} y^{\prime}
$$

Plugging the substitution into the differential equation gives,

$$
-2 v^{\prime}-2 v=x \quad \Rightarrow \quad v^{\prime}+v=-\frac{1}{2} x, \quad \mathbf{e}^{h(x)}=\mathbf{e}^{\int 1 d x}=\mathbf{e}^{x}
$$

Again, we've rearranged a little and given the integrating factor needed to solve the linear differential equation. Upon solving the linear differential equation we have,

$$
v(x)=-\frac{1}{2}(x-1)+c \mathbf{e}^{-x}
$$

Now back substitute to get back into y 's.

$$
y^{-3}=-\frac{1}{2}(x-1)+c \mathbf{e}^{-x} \Rightarrow y(x)=-\left(\frac{2}{x-1+2 c \mathbf{e}^{-x}}\right)^{\frac{1}{3}}
$$

Now we need to apply the initial condition and solve for c.

$$
-\frac{1}{8}=\frac{1}{2}+c \quad \Rightarrow \quad c=-\frac{5}{8}
$$

Plugging in c and solving for y gives,

$$
y(x)=-\frac{2}{\left(4 x-4+5 \mathbf{e}^{-x}\right)^{\frac{1}{3}}}
$$

(2)[4Pts] Find the general solution and solve the following IVP

$$
y^{\prime}+\frac{1}{x} y-\sqrt{y}=0, \quad y(1)=0
$$

Let's first get the differential equation into proper form.

$$
y^{\prime}+\frac{1}{x} y=y^{\frac{1}{2}} \quad \Rightarrow \quad y^{-\frac{1}{2}} y^{\prime}+\frac{1}{x} y^{\frac{1}{2}}=1
$$

The substitution is then,

$$
v=y^{\frac{1}{2}} \quad v^{\prime}=\frac{1}{2} y^{-\frac{1}{2}} y^{\prime}
$$

Now plug the substitution into the differential equation to get,

$$
2 v^{\prime}+\frac{1}{x} v=1 \quad \Rightarrow \quad v^{\prime}+\frac{1}{2 x} v=\frac{1}{2}, \quad \mathbf{e}^{h(x)}=\mathbf{e}^{\int \frac{1}{2 x} d x}=x^{\frac{1}{2}}
$$

As we've done with the previous examples we've done some rearranging and given the integrating factor needed for solving the linear differential equation. Solving this gives us,

$$
v(x)=\frac{1}{3} x+c x^{-\frac{1}{2}}
$$

In terms of y this is,

$$
y^{\frac{1}{2}}=\frac{1}{3} x+c x^{-\frac{1}{2}}, \quad \Rightarrow \quad y(x)=\left(\frac{1}{3} x+c x^{-\frac{1}{2}}\right)^{2}
$$

Applying the initial condition and solving for c gives,

$$
0=\frac{1}{3}+c \quad \Rightarrow \quad c=-\frac{1}{3}
$$

Plugging in for c and solving for y gives us the solution.

$$
y(x)=\left(\frac{1}{3} x-\frac{1}{3} x^{-\frac{1}{2}}\right)^{2}=\frac{x^{3}-2 x^{\frac{3}{2}}+1}{9 x}
$$

(3) [4Pts] Find the general solution of the following problem

$$
x y y^{\prime}+4 x^{2}+y^{2}=0
$$

Let's first divide both sides by x^{2} to rewrite the differential equation as follows,

$$
\frac{y}{x} y^{\prime}=-4-\frac{y^{2}}{x^{2}}=-4-\left(\frac{y}{x}\right)^{2}
$$

Now, this is not in the officially proper form as we have listed above, but we can see that everywhere the variables are listed they show up as the ratio, y / x and so this is really as far as we need to go. So, let's plug the substitution into this form of the differential equation to get,

$$
v\left(v+x v^{\prime}\right)=-4-v^{2}
$$

Next, rewrite the differential equation to get everything separated out.

$$
\begin{aligned}
v x v^{\prime} & =-4-2 v^{2} \\
x v^{\prime} & =-\frac{4+2 v^{2}}{v} \\
\frac{v}{4+2 v^{2}} d v & =-\frac{1}{x} d x
\end{aligned}
$$

Integrating both sides gives,

$$
\frac{1}{4} \ln \left(4+2 v^{2}\right)=-\ln (x)+c
$$

We need to do a little rewriting using basic logarithm properties in order to be able to easily solve this for v.

$$
\ln \left(4+2 v^{2}\right)^{\frac{1}{4}}=\ln (x)^{-1}+c
$$

Now exponentiate both sides and do a little rewriting

$$
\left(4+2 v^{2}\right)^{\frac{1}{4}}=\mathbf{e}^{\ln (x)^{-1}+c}=\mathbf{e}^{c} \mathbf{e}^{\ln (x)^{-1}}=\frac{c}{x}
$$

Note that because c is an unknown constant then so is \mathbf{e}^{c} and so we may as well just call this c as we did above. Finally, let's solve for v and then plug the substitution back in and we'll play a little fast and loose with constants again.

$$
\begin{aligned}
4+2 v^{2} & =\frac{c^{4}}{x^{4}}=\frac{c}{x^{4}} \\
v^{2} & =\frac{1}{2}\left(\frac{c}{x^{4}}-4\right) \\
\frac{y^{2}}{x^{2}} & =\frac{1}{2}\left(\frac{c-4 x^{4}}{x^{4}}\right) \\
y^{2} & =\frac{1}{2} x^{2}\left(\frac{c-4 x^{4}}{x^{4}}\right)=\frac{c-4 x^{4}}{2 x^{2}}
\end{aligned}
$$

(4)[4Pts] Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its temperature and that of its surroundings. Suppose that the temperature of a cup of tea obeys Newton's law of cooling. If the coffee has a temperature of 200 F when freshly poured, and 1 min later has cooled to 190 F in a room at 70 F . Determine when the coffee reaches a temperature of 150 F .

Let T be the temperature of the object, and T_{s} the temperature of the surroundings. We can write Newton's law of cooling in equation form as follows:

$$
\frac{d T}{d t}=-k\left(T-T_{s}\right)
$$

Here k is a still-unknown constant, greater than zero. Let's double-check the sign: if the object has a higher temperature than its surroundings, then $T>T_{s}$, so $d T / d t$ is negative, so the object is cooling, which is what we expect. We solve the equation by separating the variables.

$$
\begin{aligned}
\int \frac{1}{T-T_{s}} d T & =\int-k d t \\
\ln \left|T-T_{s}\right| & =-k t+C \\
\left|T-T_{s}\right| & =A e^{-k t} \\
T-T_{s} & =A e^{-k t} \quad(\text { replacing A with } \pm A) \\
T & =A e^{-k t}+T_{s}
\end{aligned}
$$

In the given problem (with units degrees Fahrenheit), we have $T_{s}=70$ and $T(0)=200$, so we get $A=130$. Since $T(1)=190$,

$$
\begin{aligned}
190 & =130 e^{-k}+70 \\
120 & =130 e^{-k} \\
120 / 130 & =e^{-k} \\
k & =\ln (120 / 130) \approx 0.08
\end{aligned}
$$

Finally, we solve for t in $T(t)=150$.

$$
\begin{aligned}
150 & =130 e^{-0.08 t}+70 \\
80 & =130 e^{-0.08 t} \\
80 / 130 & =e^{-0.08 t} \\
\ln (80 / 130) & =-0.08 t \\
t & =6.066 \mathrm{~min}
\end{aligned}
$$

(5) [4Pts] The size of a certain bacterial colony increases at a rate proportional to the size of the colony. Suppose the colony occupied an area of 0.25 square centimeters initially, and after 8 hours it occupied an area of 0.35 square centimeters.
(a) Estimate the size of the colony t hours after the initial measurement.
(b) What is the expected size of the colony after 12 hours?
(c) Find the doubling time of the colony
(a). Let $P(t)$ denote the size of the colony t hours after the initial measurement. Since $P(0)=0.25$ and $P(8)=0.35$, we have

$$
\begin{gathered}
P(t)=P(0) \mathbf{e}^{k t}=0.25 \mathbf{e}^{k t} \\
P(8)=0.25 \mathbf{e}^{8 k}=0.35
\end{gathered}
$$

Thus

$$
\mathbf{e}^{8 t}=\frac{7}{5} \quad \Rightarrow \quad k=\frac{\ln (7 / 5)}{8} \approx 0.0421
$$

and

$$
P(t)=0.25 \mathbf{e}^{0.0421 t} \text { or } 0.25 \times\left(\frac{7}{5}\right)^{\frac{t}{8}}
$$

(b).

$$
P(12)=0.25 \mathrm{e}^{0.0421 \times 12} \approx 0.414 \mathrm{~cm}^{2}
$$

(c). The doubling time is

$$
T=\frac{\ln 2}{k} \approx \frac{\ln 2}{0.0421} \approx 16.464 \text { hours }
$$

