Homework \#3

You must justify all steps to get credit for your work
Please submit the HW via CASA or email your completed assignment as a single PDF file to jshi24@CougarNet. UH.EDU.
(1)[4Pts] Find the general solution of the following differential equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

Characteristic polynomial:

$$
p(r)=(r-3)^{2}
$$

Roots: $r_{1}=r_{2}=3$
General solution:

$$
y=A e^{3 x}+B x e^{3 x}
$$

(2)[4Pts] Find the general solution of the following differential equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

Characteristic polynomial:

$$
p(r)=r^{2}-4 r+5
$$

Roots: $r_{1}, r_{2}=2 \pm i$
General solution:

$$
y=(A \cos (x)+B \sin (x)) e^{2 x}
$$

(3)[4Pts] Find the general solution of the following differential equation

$$
y^{\prime \prime}+y^{\prime}+\frac{1}{4} y=0
$$

Characteristic polynomial:

$$
p(r)=r^{2}+r+1 / 4
$$

Roots: $r_{1}=r_{2}=-1 / 2$
General solution:

$$
y=A e^{-x / 2}+B x e^{-x / 2}
$$

(4)[4Pts] Find the general solution of the homogeneous differential equation and solve the following IVP

$$
y^{\prime \prime}+10 y=0, \quad y(0)=5, y^{\prime}(0)=5 / \sqrt{10}
$$

Characteristic polynomial:

$$
p(r)=r^{2}+10
$$

Roots: $r_{1}, r_{2}= \pm i \sqrt{10}$
General solution:

$$
y=A \cos (\sqrt{10} x)+B \sin (\sqrt{10} x)
$$

From the expression of $y(x)=A \cos (\sqrt{10} x)+B \sin (\sqrt{10} x)$, we compute

$$
y^{\prime}(x)=-\sqrt{10} A \sin (\sqrt{10} x)+\sqrt{10} B \cos (\sqrt{10} x)
$$

By $y(0)=5$ and $y^{\prime}(0)=5 / \sqrt{10}$, we have

$$
\left\{\begin{array} { l }
{ A + 0 = 5 } \\
{ 0 + \sqrt { 1 0 } B = 5 / \sqrt { 1 0 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=5 \\
B=\frac{1}{2}
\end{array}\right.\right.
$$

IVP solution

$$
y=5 \cos (\sqrt{10} x)+\frac{1}{2} \sin (\sqrt{10} x)
$$

(5)[4Pts] Consider the following linear second-order differential equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0, \quad x>0
$$

(a) Show that there are 2 solutions of the form x^{r}.
(b) Prove that the 2 solutions are linearly independent.
(c) Find the solution satisfying the initial condition $y(1)=0, y^{\prime}(1)=1$
(a) By substitution, we find that $C x^{r}$ is a solution for $r=1$ and $r=-1$. Hence $y_{1}=x$, $y_{2}=\frac{1}{x}$ and the general solution is:

$$
y=A x+B x^{-1}
$$

(b) Calculation of Wronskian gives $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=-2 / x \neq 0$. This implies that the two functions are linearly independent.
(c) By (a), the general solution is:

$$
y=A x+B x^{-1}
$$

IVP solution:

$$
y(x)=\frac{1}{2}\left(x-\frac{1}{x}\right)
$$

