Homework \#5

You must justify all steps to get credit for your work
Please submit the HW via CASA or email your completed assignment as a single PDF file to jshi24@CougarNet.UH.EDU.
(1)[4Pts] Consider the following linear differential equation

$$
y^{\prime \prime \prime}+y=0
$$

(a) Find the general solution of the following differential equation
(b) Solve the IVP where $y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0$
(a) Characteristic polynomial

$$
p(r)=r^{3}+1
$$

whose 3 roots are

$$
r=\sqrt[3]{-1}=e^{i \pi / 3}, e^{i \pi}, e^{i 5 \pi / 3}
$$

We can re-write the roots as $r_{1}=-1$ and $r_{2,3}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. Thus

$$
y(x)=C_{1} e^{-x}+C_{2} e^{x / 2} \cos \left(\frac{\sqrt{3}}{2} x\right)+C_{3} e^{x / 2} \sin \left(\frac{\sqrt{3}}{2} x\right)
$$

(b)

$$
y(x)=-\frac{1}{3} e^{-x}+\frac{1}{3} e^{x / 2} \cos \left(\frac{\sqrt{3}}{2} x\right)+\frac{\sqrt{3}}{3} e^{x / 2} \sin \left(\frac{\sqrt{3}}{2} x\right)
$$

(2) Use the method of variation of parameters to compute a particular solution of the following linear differential equation

$$
y^{\prime \prime \prime}-y^{\prime}=x
$$

Characteristic polynomial

$$
p(r)=r^{3}-r
$$

whose 3 roots are

$$
r=0,1,-1
$$

The non-homogeneous term is a polynomial of degree 1. Since A is a solution of the homogeneous equation, we look for a particular solution of the form $y_{p}=x(A+B x)=A x+B x^{2}$. We find $B=1 / 2$, hence

$$
y_{p}(x)=\frac{1}{2} x^{2}
$$

(3) Use the method of variation of parameters to compute a particular solution of the following linear differential equation (note that $r=1$ is a root of the characteristic polynomial)

$$
y^{(4)}-4 y^{(3)}+6 y^{\prime \prime}-4 y^{\prime}+y=e^{x}
$$

Characteristic polynomial

$$
p(r)=r^{4}-4 r^{3}+6 r^{2}-4 r+1=(r-1)^{4}
$$

whose root $r=1$ has multiplicity 4, so the homogeneous solution is

$$
y_{h}(x)=\left(A+B x+C x^{2}+D x^{3}\right) e^{x}
$$

The non-homogeneous term e^{x} is contained in the homogeneous solution so we look for a particular solution of the form $y_{p}=E x^{4} e^{x}$. By substitution, we find $E=1 / 24$, hence

$$
y_{p}(x)=\frac{1}{24} x^{4} e^{x}
$$

(4) Find the general solution of the following non-homogeneous differential equation

$$
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}=x
$$

Characteristic polynomial

$$
p(r)=r^{3}+r^{2}+r=r\left(r^{2}+r+1\right)
$$

whose roots are

$$
r_{1}=0, r_{2,3}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}
$$

Hence the homogeneous solution is

$$
y_{h}(x)=C_{1}+C_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3}}{2} x\right)+C_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3}}{2} x\right)
$$

The non-homogeneous term x is not contained in the homogeneous solution but $f(x)=x=x e^{0 x}$ and $r_{1}=0$ is the root of characteristic equation $p(r)=0$ so we look for a particular solution of the form $y_{p}=x(A+B x)$. By substitution, we find $A=1 / 2$ and $B=-1$, hence the general solution is

$$
y(x)=C_{1}+C_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3}}{2} x\right)+C_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3}}{2} x\right)+\left(\frac{1}{2} x^{2}-x\right)
$$

(5) Find the solution of the following IVP modeling undamped forced harmonic motion

$$
y^{\prime \prime}+4 y=\sin (2 x), \quad y(0)=3 / 4, \quad y^{\prime}(0)=2
$$

Please, write the solution using sinusoidal functions with amplitude and phase as in Lecture 12.
Characteristic polynomial

$$
p(r)=r^{2}+4
$$

whose roots are

$$
r= \pm 2 i
$$

Hence the homogeneous solution is

$$
y_{h}(x)=C_{1} \cos (2 x)+C_{2} \sin (2 x)=A \sin (2 x+\phi)
$$

The forcing term is contained in the homogeneous solution so we look for a particular solution of the form

$$
y_{p}(x)=B x \sin (2 x+\psi)
$$

By substitution, we find $B=-1 / 4, \psi=\pi / 2$ hence the general solution is

$$
y(x)=C_{1} \cos (2 x)+C_{2} \sin (2 x)-\frac{1}{4} x \cos (2 x)
$$

We have

$$
\frac{3}{4}=y(0)=C_{1}, \quad 2=y^{\prime}(0)=2 C_{2}-\frac{1}{4}
$$

This implies

$$
\left\{\begin{array}{l}
C_{1}=\frac{3}{4} \\
C_{2}=\frac{9}{8}
\end{array}\right.
$$

and

$$
y(x)=\frac{3}{4} \cos (2 x)+\frac{9}{8} \sin (2 x)-\frac{1}{4} x \cos (2 x)
$$

