HW 10

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) Let

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Use the chain rule and the product rule to show that f is differentiable at each $x \neq 0$ and find $f^{\prime}(x)$.
(b) Use the definition to show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
(c) Show that f^{\prime} is not continuous at $x=0$.
(d) Let $g(x)=x^{2}$ if $x \leq 0$ and $g(x)=x^{2} \sin \frac{1}{x}$ if $x>0$. Determine whether or not g is differentiable at $x=0$. If it is, find $g^{\prime}(0)$.
(2) Let $f(x)=x^{2}$ if x is rational and $f(x)=0$ if x is irrational.
(a) Prove that f is continuous at exactly one point, namely at $x=0$.
(b) Prove that f is differentiable at exactly one point, namely at $x=0$.
(3) Use the mean value theorem to establish the following inequalities
(a) $e^{x}>1+x$, for $x>0$.
(b) $\frac{x-1}{x}<\ln x<x-1$, for $x>1$.
(f) $\sin x \leq x$, for $x \geq 0$.
(4) A differentiable function f is said to be increasing on an interval I if $x_{1}<x_{2}$ in I implies that $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Prove that f is increasing on I iff $f^{\prime}(x) \geq 0$ for all $x \in I$.

