HW 1

Please, write clearly and justify your arguments using the theory covered in class to get credit for your work.
(1) $[3 \mathrm{Pts}]$ Prove that

$$
\sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1) \quad n \in \mathbb{N}
$$

Solution: For $n=1$ it is easily verified.
Now assume it works for $n=k$.
For $n=k+1$, we have

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\sum_{i=1}^{k} i^{2}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =\frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1) \quad \text { QED. }
\end{aligned}
$$

(2) [3Pts] Prove that, for any $n \in \mathbb{N}$, the number $9^{n}-4^{n}$ is divisible by 5 .

Solution: For $n=1,9-4=5$, hence it is true.
Now assume it is true for $n=k$; that is, there is an $m \in \mathbb{N}$ such that $9^{k}-4^{k}=5 m$.

So, for $n=k+1$ we get

$$
\begin{aligned}
9^{k+1}-4^{k+1} & =9 \cdot 9^{k}-4 \cdot 4^{k} \\
& =9\left(9^{k}-4^{k}\right)+9 \cdot 4^{k}-4 \cdot 4^{k} \\
& =9 \cdot 5 \cdot m+5 \cdot 4^{k} \\
& =5\left(9 \cdot m+4^{k}\right) \quad \text { QED. }
\end{aligned}
$$

(3) [3Pts] Prove that, for any $n \geq 4$ the following inequality holds

$$
n^{2} \leq 2^{n}
$$

Solution: It satisfies for $n=4$ since $4^{2}=2^{4}=16$.
Now assume it is true for $n=k>4$. That is, $k^{2} \leq 2^{k}$.
Then for $n=k+1$ we have

$$
(k+1)^{2}=k^{2}+2 k+1 \leq 2^{k}+2 k+1 .
$$

We observe ${ }^{1}$ that, for $k>4,2 k+1<2 k+k<3 k<k^{2}$. Hence, going back to the prior inequality and using the inductive step we have

$$
(k+1)^{2}=k^{2}+2 k+1 \leq k^{2}+k^{2} \leq 2^{k}+2^{k}=2^{k+1} \quad \text { QED. }
$$

(4) [1Pts] Let $x, y \in \mathbb{R}$ and $\epsilon>0$. Prove that is $|x-y| \leq \epsilon$, then $|x| \leq|y|+\epsilon$.

Solution: Using the triangle inequality, we have that

$$
|x|=|x-y+y| \leq|x-y|+|y| \leq \epsilon+|y| \quad \text { QED. }
$$

[^0]
[^0]: ${ }^{1}$ Alternative argument: We can show that $2 k+1<k^{2}$ for $k>0$ by observing that the quadratic equation $k^{2}-2 k-1$ has roots at $1 \pm \sqrt{2}$ hence its positive for $k>1+\sqrt{2}$.

