HW 2

Please, write clearly and justify your arguments using the theory covered in class to get credit for your work.
(1) [3Pts] Let S, T be nonempty subsets of \mathbb{R} and suppose that $S \subset T$. Prove that

$$
\inf T \leq \inf S \leq \sup S \leq \sup T
$$

Proof. For every $t \in T$, by definition it is $\inf T \leq t$.
$\overline{\text { Since }} S \subset T$, then for every $s \in S$, it is $\inf T \leq s$. This shows that $\inf T$ is a lower bond of S, hence $\inf T \leq \inf S$.

Since for every $s \in S$, it is $\inf S \leq s$, then $\inf S \leq \sup S$.
For every $t \in T$, by definition it is $t \leq \sup T$. Since $S \subset T$ then $s \leq \sup T$ for all $S \in S$. This shows that $\sup T$ is an upper bound of S, hence $\sup S \leq$ $\sup T$.

Combining these observations, we conclude that

$$
\inf T \leq \inf S \leq \sup S \leq \sup T
$$

(2) [3Pts] Let S be a nonempty and bounded subset of \mathbb{R}. Prove that $M=\sup S$ is unique.
Proof. Suppose that there exists another number $M_{1}=\sup S$ with $M_{1} \neq M$. Then either $M_{1}>M$ or $M_{1}<M$. If $M_{1}>M$ then M_{1} would not be $\sup S$ since it could not be the least upper bound of S. Similarly, if $M_{1}<M$ then M would not be $\sup S$ since it could not be the least upper bound of S. Thus it must be $M=M_{1}$
(3) [3Pts] Let $S=\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$. Prove that $\sup S=1$ and find the accumulation points of S is any. Justify your answer.
Proof. $1-\frac{1}{n} \leq 1$, for all n, hence 1 is an upper bound of S. To show that 1 is the least upper bound, observe that, if $M=1-\epsilon$, for some $\epsilon>0$, by the Archimedean property there exists some $n \in \mathbb{N}$ such that $1-\frac{1}{n}>1-\epsilon$, so that M cannot be an upper bound. Hence $\sup S=1$.

1 is an accumulation point of S since, for any interval of the form $(1-$ $\epsilon, 1+\epsilon)$, with $\epsilon>0$, the Archimedean property implies that there exists some $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$ so that $1+\epsilon>1-\frac{1}{n}>1-\epsilon$. S has no other accumulation points. For any point $x_{n}=1-\frac{1}{n}$, the distance to the closest point is $\frac{1}{n(n+1)}$, so that the deleted neighborhood $N\left(x_{n}, r_{n}\right)$ with $r_{n}<\frac{1}{n(n+1)}$ has empty intersection with the set S.
(4) $[3 \mathrm{Pts}]$ Let $X \in \mathbb{R}$ be nonempty and f, g be bounded functions defined on X. Prove that

$$
\sup \{f(x)+g(x): x \in X\} \leq \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}
$$

Give examples to show that the inequality can be either an equality or a strict inequality.
$\underline{\text { Proof. For any } x \in X, f(x) \leq \sup \{f(y): y \in X\} \text { and } g(x) \leq \sup \{g(y): ~}$ $y \overline{\in X\}}$. Hence for any $x \in X$,

$$
f(x)+g(x) \leq \sup \{f(y): y \in X\}+g(x) \leq \sup \{g(y): y \in X\}
$$

This shows that the right hand side is an upper bound of the set $\{f(x)+g(x)$: $x \in X\}$. Hence

$$
\sup \{f(x)+g(x): x \in X\} \leq \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}
$$

Example (equality). Set $f(x)=x, g(x)=1$, for $x \in[0,1]$ Then

$$
\begin{aligned}
2 & =\sup \{f(x)+g(x): x \in[0,1]\} \\
& =\sup \{f(x): x \in[0,1]\}+\sup \{g(x): x \in[0,1]\} \\
& =1+1
\end{aligned}
$$

Example (inequality). Set $f(x)=x, g(x)=-x$, for $x \in[0,1]$ Then

$$
\begin{aligned}
0 & =\sup \{f(x)+g(x): x \in[0,1]\} \\
& =\sup \{f(x): x \in[0,1]\}+\sup \{g(x): x \in[0,1]\} \\
& =1+0
\end{aligned}
$$

(5) [3Pts] Let $S \subset \mathbb{R}$ be nonempty. Show that S is bounded if and only if there exists a closed bounded interval I such that $S \subset I$.

Proof. If S is bounded then let $m=\inf S$ and $M=\sup S$. It follows that S is contained in the interval $I=[m, M]$.

Conversely, suppose that $S \subset I=[a, b]$, where $a, b \in \mathbb{R}$. It follows that $a \leq \inf S$ and $\sup S \leq b$. Hence S is bounded.

