<u>HW 3</u>

Please, write clearly and justify your arguments using the theory covered in class to get credit for your work.

(1) [4 Pts] Prove the following.

(a) An accumulation point of a set S is either an interior point of S or a boundary point of S.

Proof. If x is an interior point of S then it is an accumulation point of S since any deleted neighborhood $N^*(x,\epsilon)$ contains elements of S. Next, let x be an accumulation point of set S and suppose that x is not an interior point of S. Let $N(x,\epsilon)$ be an arbitrary neighborhood of x. Since x is not an interior point of S then $N(x,\epsilon)$ is not contained in S, that is, $N(x,\epsilon) \cap (R \setminus S) \neq \emptyset$. On the other hand, since x is an accumulation point of S then every deleted neighborhood of x and hence every neighborhood of x must contain a point of S. Thus $N(x,\epsilon) \cap S \neq \emptyset$. It follows that x is a boundary point of S.

(b) A boundary point of a set S is either an accumulation point of S or an isolated point of S.

Proof. Let $x \in bd S$ and suppose $x \in S$. If x is not an accumulation point of S then by definition x is an isolated point of S. On the other hand, suppose $x \notin S$. Since $x \in bd S$, every neighborhood of x must intersect S in a point, but this point cannot be x since $x \notin S$. This means every deleted neighborhood of x must contain a point of S hence x is an accumulation point of S.

(2) [5 Pts] Mark each statement as True or False. If False, show a counterexample. If True, justify your answer.

(a) Every finite set is compact.

True. By theorem discussed in class.

- (b) The set S = {1/n : n ∈ N} is compact. False. The set S is not closed since 0 is an accumulation point of S but 0 ∉ S.
- (c) If S is unbounded then S has an accumulation point. False. The set \mathbb{N} is unbounded yet has no accumulation points.
- (d) If $S \subset \mathbb{R}$ is compact and x is an accumulation point of S, then $x \in S$. True. If a set is compact then it is closed and it must contain all its accumulation points.

(e) If $S \subset \mathbb{R}$ is a compact, then there is at least one point in \mathbb{R} that is an accumulation point of S.

False. The set $S = \{1, 2, 3\}$ is compact since closed and bounded but it contains no accumulation points.

(3) [3 Pts] Prove or give a counterexample: If a set S has a maximum and a minimum, then S is a closed set.

This is false. Consider the set $S = [1,2) \cup (3,4]$. This set has a maximum and a minimum (min S = 1, max S = 4) but the set is clearly not closed.

(4) [4 Pts]

(a) Let S_1, S_2 be compact subsets of \mathbb{R} . Prove that $S_1 \cup S_2$ is also compact.

(b) Find an infinite collection of compact subsets $\{S_n : n \in \mathbb{N}\}$ such that the union $\bigcup_n S_n$ is not compact. Explain why the resulting set is not compact.

(a) Proof. Since S_1 and S_2 are compact they are closed and bounded sets (by the Heine-Borel theorem). Hence $S_1 \cup S_2$ is a closed set since is a finite union of closed sets. $S_1 \cup S_2$ is also bounded since $\sup(S_1 \cup S_2) \leq \sup S_1 + \sup S_2$ and $\inf(S_1 \cup S_2) \geq \inf S_1 + \inf S_2$. It follows that $S_1 \cup S_2$ is compact (by the Heine-Borel theorem).

(b) Let $S_n = [-n, n]$. Each set S_n is compact since closed and bounded. However, $\bigcup_n S_n = \mathbb{R}$ and this set is not compact.

(5) [3 Pts] Using the definition of compactness and the fact that a compact set is closed, prove that the intersection of any collection of compact subsets is also compact.

Proof. If $\cap S_n = \emptyset$ then the statement is trivially true. Hence assume that $\cap S_n \neq \emptyset$. Let (S_n) be a collection of compact sets and O be an open cover of $G = \cap S_n$. Since $\cap S_n$ is closed, then G^c is open. Let $O' = O \cup G^c$. O' is an open cover of S_1 and, since S_1 is compact, it has a finite open subcover $F \subset O'$. Since $G = \cap S_n \subset S_1$, then F is also a finite open cover of G and $F \setminus G^c \subset O$ is also finite open cover of $G = \cap S_n$. This shows that any open cover O of G has a finite open subcover.

(5b) [3 Pts] Prove that the intersection of any collection of compact subsets is also compact.

Proof. Let (S_n) be a collection of compact sets. Each set S_n is a closed and bounded set (by the Heine-Borel theorem). It follows by the properties of closed sets that $\cap S_n$ is a closed set. $\cap S_n$ is also bounded since $\sup(\cap S_n) \leq$ $\sup_n(\max S_n)$ and $\inf(\cap S_n) \ge \inf_n(\min S_n)$. It follows that $\cap S_n$ is compact (by the Heine-Borel theorem).