HW 4

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) [4 Pts] Use the definition of convergence to prove the following:
(a) For any real number $k, \lim _{n \rightarrow \infty} k / n=0$

We need to show that, given $\epsilon>0$, there exists $N=N(\epsilon)$ such that

$$
\left|\frac{k}{n}\right|<\epsilon
$$

provided $n>N$. For that, let $N=\left\lceil\frac{|k|}{\epsilon}\right\rceil$. Then for all $n>N$ we have that $\left|\frac{k}{n}\right|<\frac{\mid k}{N}<\epsilon$.
(b) $\lim _{n \rightarrow \infty} \frac{3 n+1}{n+2}=3$.

We need to show that, given $\epsilon>0$, there exists $N=N(\epsilon)$ such that

$$
\left|\frac{3 n+1}{n+2}-3\right|=\frac{3}{n+2}<\epsilon
$$

provided $n>N$. For that, choose, $N=\left\lceil\frac{3}{\epsilon}\right\rceil$. Then $\frac{3}{n+2}<\frac{3}{n}<\epsilon$ if $n>N$.
(2) [3 Pts] Show that the sequence $a_{n}=\cos \frac{n \pi}{3}$ is divergent.

Arguing by contradiction, suppose that $\lim a_{n}=a$. It then follows by definition that there exists an $N \in \mathbb{N}$ such that

$$
\left|\cos \frac{n \pi}{3}-a\right|<1, \quad \text { for all } n>N
$$

If we take $n=6 m$, then the inequality above implies that $|\cos (2 m \pi)-a|<1$, that is $|1-a|<1$ so that $0<a<2$. If instead we take $n=3(2 m-1)$, then the inequality above implies that $|\cos ((2 m-1) \pi)-a|<1$, that is $|1+a|<1$ so that $-2<a<0$. Since the two conditions on a cannot be satisfied at the same time, then we have a contradiction.
(3) $[3 \mathrm{Pts}]$
(a) Let $\left(s_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} s_{n}=0$ and $\left(t_{n}\right)$ be a bounded sequence. Prove that the sequence $\left(s_{n} t_{n}\right)$ is convergent.
(b) Show by example that the boundedness of $\left(t_{n}\right)$ is necessary in part (a). That is, produce an example to show that the sequence $\left(s_{n} t_{n}\right)$ may diverge if $\left(t_{n}\right)$ is not bounded.
(a) Proof. Since $\left(t_{n}\right)$ is bounded, there is an $M>0$ such that $t_{n}<M$ for all $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} s_{n}=0$, given any $\epsilon>0$, there exists and $N=N(\epsilon)$ such that $\left|s_{n}\right|<\frac{\epsilon}{M}$ if $n>N$. It follows that, given $\epsilon>0$, there exists $N=N(\epsilon)$ such that $\left|s_{n} t_{n}\right|<\frac{\epsilon}{M} M=\epsilon$ if $n>N$.
(b) Consider the sequences $\left(s_{n}\right)=\left(\frac{1}{n}\right)$ and $\left(t_{n}\right)=\left(n^{2}\right)$. Then $\left(s_{n} t_{n}\right)=(n)$ and this sequence is not convergent.
(4) [3 Pts] Prove or give a counterexamples:
(a) If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are divergent sequences, then $\left(s_{n}+t_{n}\right)$ diverges.

FALSE. Let $\left(s_{n}\right)=(-1)^{n}$ and $\left(t_{n}\right)=(-1)^{n+1} .\left(s_{n}+t_{n}\right)=0$ conver gent.
(b) If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are divergent sequences, then $\left(s_{n} t_{n}\right)$ diverges.

FALSE. Let $\left(s_{n}\right)=(-1)^{n}$ and $\left(t_{n}\right)=(-1)^{n} .\left(s_{n} t_{n}\right)=1$ convergent.
(c) If $\left(s_{n}\right)$ and $\left(s_{n}+t_{n}\right)$ are convergent sequences, then $\left(t_{n}\right)$ converges.

TRUE by Limit Theorems. $\left(t_{n}\right)=\left(s_{n}+t_{n}\right)-\left(s_{n}\right)$ convergent since it is an algebraic sum of convergent sequences.
(5)[3 Pts] Prove that if $\left(x_{n}\right)$ is a convergent sequence, $\left(\left|x_{n}\right|\right)$ is also convergent. Is the converse true?

Proof.
Since $\left(x_{n}\right)$ converges, $\lim x_{n}=s$. Hence, given any $\epsilon>0$, there exists an $N=N(\epsilon)$ such that $\left|x_{n}-s\right|<\epsilon$ if $n>N$.

Since $\left|x_{n}\right| \leq\left|x_{n}-s\right|+|s|$ and $|s| \leq\left|s-x_{n}\right|+\left|x_{n}\right|$, it follows that $\left|\left|x_{n}\right|-|s|\right| \leq$ $\left|x_{n}-s\right|$. It follows that $\left|\left|x_{n}\right|-|s|\right|<\epsilon$ if $n>N$. Hence $\left(\left|x_{n}\right|\right)$ converges and $\lim \left|x_{n}\right|=|s|$.

The converse is not true. Consider $\left(x_{n}\right)=(-1)^{n}$. In this case, $\left(\left|x_{n}\right|\right)=1$ is convergent but (x_{n}) is not convergent.
(6) [3 Pts] Suppose that $\left(x_{n}\right)$ is a convergent sequence and $\left(y_{n}\right)$ is a sequence such that, for any $\epsilon>0$, there exists an $M>0$ such that $\left|x_{n}-y_{n}\right|<\epsilon$ for all $n>M$. Does it follow that $\left(y_{n}\right)$ converge? Prove it or find a counterexample. Proof.
Since $\left(x_{n}\right)$ converges, $\lim x_{n}=s$. Hence, given any $\epsilon>0$, there exists an $N_{1}=N_{1}(\epsilon)$ such that $\left|x_{n}-s\right|<\epsilon$ if $n>N_{1}$. Since, for any $n \in \mathbb{N}$,

$$
\left|y_{n}-s\right|=\left|y_{n}-x_{n}+x_{n}-s\right| \leq\left|y_{n}-x_{n}\right|+\left|x_{n}-s\right|,
$$

it follows that $\left|y_{n}-s\right|<2 \epsilon$ if $n>N=\max \left\{N_{1}, M\right\}$. This proves that $\lim y_{n}=s$.

