Math 3333

Name: SOLUTION

<u>HW 4</u>

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) [4 Pts] Use the definition of convergence to prove the following:

(a) For any real number k, $\lim_{n\to\infty} k/n = 0$

We need to show that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

provided n > N. For that, let $N = \lceil \frac{|k|}{\epsilon} \rceil$. Then for all n > N we have that $\left| \frac{k}{n} \right| < \frac{|k|}{N} < \epsilon$.

(b) $\lim_{n \to \infty} \frac{3n+1}{n+2} = 3.$

We need to show that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

$$\left|\frac{3n+1}{n+2} - 3\right| = \frac{3}{n+2} < \epsilon$$

provided n > N. For that, choose, $N = \lceil \frac{3}{\epsilon} \rceil$. Then $\frac{3}{n+2} < \frac{3}{n} < \epsilon$ if n > N.

(2) [3 Pts] Show that the sequence $a_n = \cos \frac{n\pi}{3}$ is divergent.

Arguing by contradiction, suppose that $\lim a_n = a$. It then follows by definition that there exists an $N \in \mathbb{N}$ such that

$$\left|\cos\frac{n\pi}{3} - a\right| < 1, \quad \text{for all } n > N.$$

If we take n = 6m, then the inequality above implies that $|\cos(2m\pi) - a| < 1$, that is |1 - a| < 1 so that 0 < a < 2. If instead we take n = 3(2m - 1), then the inequality above implies that $|\cos((2m - 1)\pi) - a| < 1$, that is |1 + a| < 1so that -2 < a < 0. Since the two conditions on a cannot be satisfied at the same time, then we have a contradiction.

(3) [3 Pts]

(a) Let (s_n) be a sequence such that $\lim_{n\to\infty} s_n = 0$ and (t_n) be a bounded sequence. Prove that the sequence $(s_n t_n)$ is convergent.

(b) Show by example that the boundedness of (t_n) is necessary in part (a). That is, produce an example to show that the sequence $(s_n t_n)$ may diverge if (t_n) is not bounded. (a) Proof. Since (t_n) is bounded, there is an M > 0 such that $t_n < M$ for all $n \in \mathbb{N}$. Since $\lim_{n\to\infty} s_n = 0$, given any $\epsilon > 0$, there exists and $N = N(\epsilon)$ such that $|s_n| < \frac{\epsilon}{M}$ if n > N. It follows that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that $|s_n t_n| < \frac{\epsilon}{M} M = \epsilon$ if n > N.

(b) Consider the sequences $(s_n) = (\frac{1}{n})$ and $(t_n) = (n^2)$. Then $(s_n t_n) = (n)$ and this sequence is not convergent.

- (4)[3 Pts] Prove or give a counterexamples:
- (a) If (s_n) and (t_n) are divergent sequences, then $(s_n + t_n)$ diverges. FALSE. Let $(s_n) = (-1)^n$ and $(t_n) = (-1)^{n+1}$. $(s_n + t_n) = 0$ convergent.
- (b) If (s_n) and (t_n) are divergent sequences, then $(s_n t_n)$ diverges. FALSE. Let $(s_n) = (-1)^n$ and $(t_n) = (-1)^n$. $(s_n t_n) = 1$ convergent.
- (c) If (s_n) and $(s_n + t_n)$ are convergent sequences, then (t_n) converges. TRUE by Limit Theorems. $(t_n) = (s_n + t_n) - (s_n)$ convergent since it is an algebraic sum of convergent sequences.

(5)[3 Pts] Prove that if (x_n) is a convergent sequence, $(|x_n|)$ is also convergent. Is the converse true?

Proof.

Since (x_n) converges, $\lim x_n = s$. Hence, given any $\epsilon > 0$, there exists an $N = N(\epsilon)$ such that $|x_n - s| < \epsilon$ if n > N.

Since $|x_n| \leq |x_n - s| + |s|$ and $|s| \leq |s - x_n| + |x_n|$, it follows that $||x_n| - |s|| \leq |x_n - s|$. It follows that $||x_n| - |s|| < \epsilon$ if n > N. Hence $(|x_n|)$ converges and $\lim |x_n| = |s|$.

The converse is not true. Consider $(x_n) = (-1)^n$. In this case, $(|x_n|) = 1$ is convergent but (x_n) is not convergent.

(6)[3 Pts] Suppose that (x_n) is a convergent sequence and (y_n) is a sequence such that, for any $\epsilon > 0$, there exists an M > 0 such that $|x_n - y_n| < \epsilon$ for all n > M. Does it follow that (y_n) converge? Prove it or find a counterexample. *Proof.*

Since (x_n) converges, $\lim x_n = s$. Hence, given any $\epsilon > 0$, there exists an $N_1 = N_1(\epsilon)$ such that $|x_n - s| < \epsilon$ if $n > N_1$. Since, for any $n \in \mathbb{N}$,

$$|y_n - s| = |y_n - x_n + x_n - s| \le |y_n - x_n| + |x_n - s|$$

it follows that $|y_n - s| < 2\epsilon$ if $n > N = \max\{N_1, M\}$. This proves that $\lim y_n = s$.