
Math 3333 Name: SOLUTION

HW 4

Please, write clearly and justify all your statements using the material cov-
ered in class to get credit for your work.

(1) [4 Pts] Mark each statement as True or False. If False, show a counter-
example. If True, justify your answer.

(a) Every finite set is compact.
True. By theorem discussed in class.

(b) The set { 1
n : n ∈ N} is compact.

False. The set S is not closed since 0 is an accumulation point of S
but 0 /∈ S.

(c) If S ⊂ R is compact and x is an accumulation point of S, then x ∈ S.
True. If a set is compact then it is closed and it must contain all its
accumulation points.

(d) If S ⊂ R is a compact, then there is at least one point in R that is an
accumulation point of S.
False. The set S = {1, 2, 3} is compact since closed and bounded but

it contains no accumulation points.

(2) [6 Pts]
(a) Let S1, S2 be compact subsets of R. Prove that S1 ∪S2 is also compact.
(b) Find an infinite collection of compact subsets {Sn : n ∈ N} such that

the union ∪nSn is not compact. Explain why the resulting set is not compact.
(c) Using the definition of compactness, prove that the intersection of any

collection of compact subsets is also compact.

(a) Proof. Since S1 and S2 are compact they are closed and bounded sets (by
the Heine-Borel theorem). Hence S1∪S2 is a closed set since is a finite union
of closed sets. S1 ∪ S2 is also bounded since sup(S1 ∪ S2) ≤ supS1 + supS2

and inf(S1 ∪ S2) ≥ inf S1 + inf S2. It follows that S1 ∪ S2 is compact (by the
Heine-Borel theorem).
(b) Let Sn = [−n, n]. Each set Sn is compact since closed and bounded.

However, ∪nSn = R and this set is not compact.
(c) Proof. Let (Sn) be a collection of compact sets. Each set Sn is a closed

and bounded set (by the Heine-Borel theorem). It follows by the properties of
closed sets that ∩Sn is a closed set. ∩Sn is also bounded since sup(∩Sn) ≤
supn(maxSn) and inf(∩Sn) ≥ infn(minSn). It follows that ∩Sn is compact
(by the Heine-Borel theorem).



2

(3) [4 Pts] Use the definition of convergence to prove the following:
(a) For any real number k, limn→∞ k/n = 0
We need to show that, given ϵ > 0, there exists N = N(ϵ) such that∣∣∣∣kn

∣∣∣∣ < ϵ

provided n > N . For that, let N = ⌈ |k|ϵ ⌉. Then for all n > N we have that

|kn| <
|k
N < ϵ.

(b) limn→∞
3n+1
n+2 = 3.

We need to show that, given ϵ > 0, there exists N = N(ϵ) such that∣∣∣∣3n+ 1

n+ 2
− 3

∣∣∣∣ = 3

n+ 2
< ϵ

provided n > N . For that, choose, N = ⌈3ϵ⌉. Then
3

n+2 <
3
n < ϵ if n > N .

(4) [3 Pts] Show that the sequence an = cosnπ3 is divergent.

Arguing by contradiction, suppose that lim an = a. It then follows by defini-
tion that there exists an N ∈ N such that∣∣∣cosnπ

3
− a

∣∣∣ < 1, for all n > N.

If we take n = 6m, then the inequality above implies that |cos(2mπ)− a| < 1,
that is |1− a| < 1 so that 0 < a < 2. If instead we take n = 3(2m− 1), then
the inequality above implies that |cos((2m− 1)π)− a| < 1, that is |1 + a| < 1
so that −2 < a < 0. Since the two conditions on a cannot be satisfied at the
same time, then we have a contradiction.

(5) [3 Pts]
(a) Let (sn) be a sequence such that limn→∞ sn = 0 and (tn) be a bounded

sequence. Prove that the sequence (sn tn) is convergent.
(b) Show by example that the boundedness of (tn) is necessary in part (a).

That is, produce an example to show that the sequence (sn tn) may diverge if
(tn) is not bounded.
(a) Proof. Since (tn) is bounded, there is an M > 0 such that tn < M for all

n ∈ N. Since limn→∞ sn = 0, given any ϵ > 0, there exists and N = N(ϵ) such
that |sn| < ϵ

M if n > N . It follows that, given ϵ > 0, there exists N = N(ϵ)
such that |sn tn| < ϵ

M M = ϵ if n > N .
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(b) Consider the sequences (sn) = ( 1n) and (tn) = (n2). Then (sn tn) = (n)
and this sequence is not convergent.

(6)[3 Pts] Prove or give a counterexamples:

(a) If (sn) and (tn) are divergent sequences, then (sn + tn) diverges.
FALSE. Let (sn) = (−1)n and (tn) = (−1)n+1. (sn + tn) = 0 conver-

gent.
(b) If (sn) and (tn) are divergent sequences, then (sn tn) diverges.

FALSE. Let (sn) = (−1)n and (tn) = (−1)n. (sn tn) = 1 convergent.
(c) If (sn) and (sn + tn) are convergent sequences, then (tn) converges.

TRUE by Limit Theorems. (tn) = (sn+ tn)− (sn) convergent since it
is an algebraic sum of convergent sequences.

(7)[3 Pts] Prove that if (xn) is a convergent sequence, (|xn|) is also conver-
gent. Is the converse true?
Proof.
Since (xn) converges, limxn = s. Hence, given any ϵ > 0, there exists an

N = N(ϵ) such that |xn − s| < ϵ if n > N .
Since |xn| ≤ |xn−s|+|s| and |s| ≤ |s−xn|+|xn|, it follows that ||xn|−|s|| ≤

|xn − s|. It follows that ||xn| − |s|| < ϵ if n > N . Hence (|xn|) converges and
lim |xn| = |s|.
The converse is not true. Consider (xn) = (−1)n. In this case, (|xn|) = 1

is convergent but (xn) is not convergent.

(8)[3 Pts] Suppose that (xn) is a convergent sequence and (yn) is a sequence
such that, for any ϵ > 0, there exists an M > 0 such that |xn − yn| < ϵ for all
n > M . Does it follow that (yn) converge? Prove it or find a counterexample.
Proof.
Since (xn) converges, limxn = s. Hence, given any ϵ > 0, there exists an

N1 = N1(ϵ) such that |xn − s| < ϵ if n > N1. Since, for any n ∈ N,
|yn − s| = |yn − xn + xn − s| ≤ |yn − xn|+ |xn − s|,

it follows that |yn − s| < 2ϵ if n > N = max{N1,M}. This proves that
lim yn = s.


