HW 4

Name: SOLUTION

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

- (1) [4 Pts] Mark each statement as True or False. If False, show a counter-example. If True, justify your answer.
 - (a) Every finite set is compact.

 True. By theorem discussed in class.
 - (b) The set $\{\frac{1}{n} : n \in \mathbb{N}\}$ is compact. False. The set S is not closed since 0 is an accumulation point of S but $0 \notin S$.
 - (c) If $S \subset \mathbb{R}$ is compact and x is an accumulation point of S, then $x \in S$. True. If a set is compact then it is closed and it must contain all its accumulation points.
 - (d) If $S \subset \mathbb{R}$ is a compact, then there is at least one point in \mathbb{R} that is an accumulation point of S.

False. The set $S = \{1, 2, 3\}$ is compact since closed and bounded but it contains no accumulation points.

- (2) [6 Pts]
- (a) Let S_1, S_2 be compact subsets of \mathbb{R} . Prove that $S_1 \cup S_2$ is also compact.
- (b) Find an infinite collection of compact subsets $\{S_n : n \in \mathbb{N}\}$ such that the union $\cup_n S_n$ is not compact. Explain why the resulting set is not compact.
- (c) Using the definition of compactness, prove that the intersection of any collection of compact subsets is also compact.
- (a) Proof. Since S_1 and S_2 are compact they are closed and bounded sets (by the Heine-Borel theorem). Hence $S_1 \cup S_2$ is a closed set since is a finite union of closed sets. $S_1 \cup S_2$ is also bounded since $\sup(S_1 \cup S_2) \leq \sup S_1 + \sup S_2$ and $\inf(S_1 \cup S_2) \geq \inf S_1 + \inf S_2$. It follows that $S_1 \cup S_2$ is compact (by the Heine-Borel theorem).
- (b) Let $S_n = [-n, n]$. Each set S_n is compact since closed and bounded. However, $\cup_n S_n = \mathbb{R}$ and this set is not compact.
- (c) Proof. Let (S_n) be a collection of compact sets. Each set S_n is a closed and bounded set (by the Heine-Borel theorem). It follows by the properties of closed sets that $\cap S_n$ is a closed set. $\cap S_n$ is also bounded since $\sup(\cap S_n) \leq \sup_n(\max S_n)$ and $\inf(\cap S_n) \geq \inf_n(\min S_n)$. It follows that $\cap S_n$ is compact (by the Heine-Borel theorem).

- (3) [4 Pts] Use the definition of convergence to prove the following:
- (a) For any real number k, $\lim_{n\to\infty} k/n = 0$

We need to show that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

$$\left|\frac{k}{n}\right| < \epsilon$$

provided n > N. For that, let $N = \lceil \frac{|k|}{\epsilon} \rceil$. Then for all n > N we have that $|\frac{k}{n}| < \frac{|k|}{N} < \epsilon$.

(b) $\lim_{n\to\infty} \frac{3n+1}{n+2} = 3$.

We need to show that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

$$\left| \frac{3n+1}{n+2} - 3 \right| = \frac{3}{n+2} < \epsilon$$

provided n > N. For that, choose, $N = \lceil \frac{3}{\epsilon} \rceil$. Then $\frac{3}{n+2} < \frac{3}{n} < \epsilon$ if n > N.

(4) [3 Pts] Show that the sequence $a_n = cos \frac{n\pi}{3}$ is divergent.

Arguing by contradiction, suppose that $\lim a_n = a$. It then follows by definition that there exists an $N \in \mathbb{N}$ such that

$$\left|\cos\frac{n\pi}{3} - a\right| < 1, \quad \text{for all } n > N.$$

If we take n=6m, then the inequality above implies that $|\cos(2m\pi)-a|<1$, that is |1-a|<1 so that 0< a<2. If instead we take n=3(2m-1), then the inequality above implies that $|\cos((2m-1)\pi)-a|<1$, that is |1+a|<1 so that -2< a<0. Since the two conditions on a cannot be satisfied at the same time, then we have a contradiction.

- (5) [3 Pts]
- (a) Let (s_n) be a sequence such that $\lim_{n\to\infty} s_n = 0$ and (t_n) be a bounded sequence. Prove that the sequence $(s_n t_n)$ is convergent.
- (b) Show by example that the boundedness of (t_n) is necessary in part (a). That is, produce an example to show that the sequence $(s_n t_n)$ may diverge if (t_n) is not bounded.
- (a) Proof. Since (t_n) is bounded, there is an M > 0 such that $t_n < M$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} s_n = 0$, given any $\epsilon > 0$, there exists and $N = N(\epsilon)$ such that $|s_n| < \frac{\epsilon}{M}$ if n > N. It follows that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that $|s_n t_n| < \frac{\epsilon}{M} M = \epsilon$ if n > N.

- (b) Consider the sequences $(s_n) = (\frac{1}{n})$ and $(t_n) = (n^2)$. Then $(s_n t_n) = (n)$ and this sequence is not convergent.
 - (6)[3 Pts] Prove or give a counterexamples:
 - (a) If (s_n) and (t_n) are divergent sequences, then $(s_n + t_n)$ diverges. FALSE. Let $(s_n) = (-1)^n$ and $(t_n) = (-1)^{n+1}$. $(s_n + t_n) = 0$ convergent.
 - (b) If (s_n) and (t_n) are divergent sequences, then $(s_n t_n)$ diverges. FALSE. Let $(s_n) = (-1)^n$ and $(t_n) = (-1)^n$. $(s_n t_n) = 1$ convergent.
 - (c) If (s_n) and $(s_n + t_n)$ are convergent sequences, then (t_n) converges. $TRUE\ by\ Limit\ Theorems.\ (t_n) = (s_n + t_n) - (s_n)\ convergent\ since\ it$ is an algebraic sum of convergent sequences.
- (7)[3 Pts] Prove that if (x_n) is a convergent sequence, $(|x_n|)$ is also convergent. Is the converse true?

Proof.

Since (x_n) converges, $\lim x_n = s$. Hence, given any $\epsilon > 0$, there exists an $N = N(\epsilon)$ such that $|x_n - s| < \epsilon$ if n > N.

Since $|x_n| \le |x_n - s| + |s|$ and $|s| \le |s - x_n| + |x_n|$, it follows that $||x_n| - |s|| \le |x_n - s|$. It follows that $||x_n| - |s|| < \epsilon$ if n > N. Hence $(|x_n|)$ converges and $\lim |x_n| = |s|$.

The converse is not true. Consider $(x_n) = (-1)^n$. In this case, $(|x_n|) = 1$ is convergent but (x_n) is not convergent.

(8)[3 Pts] Suppose that (x_n) is a convergent sequence and (y_n) is a sequence such that, for any $\epsilon > 0$, there exists an M > 0 such that $|x_n - y_n| < \epsilon$ for all n > M. Does it follow that (y_n) converge? Prove it or find a counterexample. *Proof.*

Since (x_n) converges, $\lim x_n = s$. Hence, given any $\epsilon > 0$, there exists an $N_1 = N_1(\epsilon)$ such that $|x_n - s| < \epsilon$ if $n > N_1$. Since, for any $n \in \mathbb{N}$,

$$|y_n - s| = |y_n - x_n + x_n - s| \le |y_n - x_n| + |x_n - s|,$$

it follows that $|y_n - s| < 2\epsilon$ if $n > N = \max\{N_1, M\}$. This proves that $\lim y_n = s$.