HW 5

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) Prove that

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+1}-n=0
$$

Proof. Observe that

$$
\left|\sqrt{n^{2}+1}-n\right|=\frac{1}{\sqrt{n^{2}+1}+n}<\frac{1}{n}
$$

Given any $\epsilon>0$, let $N>\frac{1}{\epsilon}$, then

$$
\left|\sqrt{n^{2}+1}-n\right|<\frac{1}{n}<\epsilon, \quad \text { if } n>N .
$$

This proves that $\lim _{n \rightarrow \infty} \sqrt{n^{2}+1}-n=0$.
(2) Prove that if $\lim _{n \rightarrow \infty} s_{n}=\infty$ and if $\left(t_{n}\right)$ is a bounded sequence, then

$$
\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=\infty
$$

Proof. Since $\left(t_{n}\right)$ is bounded, there exists an N_{1} such that $t_{n}>L$ if $n>N_{1}$. Note that L can be a negative number.

Since $\lim _{n \rightarrow \infty} s_{n}=\infty$, given any $M>0$, there exists an N_{2} such that $s_{n}>M-L$ if $n>N_{2}$.

Hence, provided $n>\max N_{1}, N_{2}$, we have that $s_{n}+t_{n}>M$. Since M is arbitrary, this proves that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=\infty$.
(3) Prove that if $\lim _{n \rightarrow \infty} s_{n}=\infty$ and $\lim _{n \rightarrow \infty} t_{n}=L>0$, then

$$
\lim _{n \rightarrow \infty}\left(s_{n} t_{n}\right)=\infty
$$

Proof. Since $\lim _{n \rightarrow \infty} t_{n}=L$, there exists an N_{1} such that $\left|t_{n}-L\right|<L / 2$ if $n>N_{1}$. Hence, $t_{n}>L / 2$, is $n>N_{1}$.

Since $\lim _{n \rightarrow \infty} s_{n}=\infty$, given any $M>0$, there exists an N_{2} such that $s_{n}>2 M / L$ if $n>N_{2}$.

Hence, provided $n>\max N_{1}, N_{2}$, we have that $s_{n} t_{n}>M$. Since M is arbitrary, this proves that $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}\right)=\infty$.
(4) Prove that the sequence below is monotone and bounded. Next find its limit.

$$
s_{1}=1, \quad s_{n+1}=\frac{1}{5}\left(s_{n}+7\right), \quad n \geq 1
$$

Proof. Note that $s_{1}=1, s_{2}=\frac{1}{5}(1+7)=\frac{8}{5}$.
Claim: $s_{n} \leq 2$. Proof by induction:
$s_{1}=1<2$.
Assume $s_{n} \leq 2$.
Then $s_{n+1}=\frac{1}{5}\left(s_{n}+7\right) \leq s_{n+1}=\frac{1}{5}(2+7)=\frac{9}{5}<2$.
Claim: $s_{n+1} \geq s_{n}$. Proof by induction:
$s_{2}<s_{1}$.
Assume $s_{n+1} \geq s_{n}$.
Then $s_{n+2}=\frac{1}{5}\left(s_{n+1}+7\right) \geq \frac{1}{5}\left(s_{n}+7\right)=s_{n+1}$.
Since $\left(s_{n}\right)$ is monotone and bounded, then it is convergent. Thus

$$
s=\lim s_{n+1}=\lim \frac{1}{5}\left(s_{n}+7\right)=\frac{1}{5}(s+7) .
$$

Hence

$$
5 s=s+7 \quad \text { and } \quad s=\frac{7}{4} .
$$

(5) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be monotone sequences. Prove or give a counterexample.
(a) The sequence $\left(c_{n}\right)$ given by $c_{n}=a_{n}+b_{n}$ is monotone.

FALSE. Let $\left(a_{n}\right)=(1,2,2,2, \ldots)$ and $\left(b_{n}\right)=(2,2,1,1, \ldots)$. Then $\left(c_{n}\right)=$ $\left(a_{n}+b_{n}\right)=(3,4,3,3, \ldots)$ is not monotone.
(b) The sequence (c_{n}) given by $c_{n}=a_{n} b_{n}$ is monotone.

FALSE. Let $\left(a_{n}\right)=(1,2,2,2, \ldots)$ and $\left(b_{n}\right)=(2,2,1,1, \ldots)$. Then $\left(c_{n}\right)=$ $\left(a_{n} b_{n}\right)=(2,4,2,2, \ldots)$ is not monotone.

