Name: SOLUTION

HW 5

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) Prove that

$$\lim_{n \to \infty} \sqrt{n^2 + 1} - n = 0$$

Proof. Observe that

$$|\sqrt{n^2+1}-n| = \frac{1}{\sqrt{n^2+1}+n} < \frac{1}{n}$$

Given any $\epsilon > 0$, let $N > \frac{1}{\epsilon}$, then

$$|\sqrt{n^2+1}-n|<\frac{1}{n}<\epsilon,\quad if\ n>N.$$

This proves that $\lim_{n\to\infty} \sqrt{n^2+1} - n = 0$.

(2) Prove that if $\lim_{n\to\infty} s_n = \infty$ and if (t_n) is a bounded sequence, then

$$\lim_{n \to \infty} (s_n + t_n) = \infty$$

Proof. Since (t_n) is bounded, there exists an $N_1 \in \mathbb{N}$ and a L > 0 such that $|t_n| < L$ if $n > N_1$. That is, $-L < t_n < L$ if $n > N_1$.

Since $\lim_{n\to\infty} s_n = \infty$, given any M > 0, there exists an N_2 such that $s_n > M + L$ if $n > N_2$.

Hence, provided $n > \max\{N_1, N_2\}$, we have that $s_n + t_n > M$. Since M is arbitrary, this proves that $\lim_{n\to\infty} (s_n + t_n) = \infty$.

(3) Prove that if $\lim_{n\to\infty} s_n = \infty$ and $\lim_{n\to\infty} t_n = L > 0$, then

$$\lim_{n \to \infty} (s_n t_n) = \infty$$

Proof. Since $\lim_{n\to\infty} t_n = L$, there exists an N_1 such that $|t_n - L| < L/2$ if $n > N_1$. Hence, $t_n > L/2$, is $n > N_1$.

Since $\lim_{n\to\infty} s_n = \infty$, given any M > 0, there exists an N_2 such that $s_n > 2M/L$ if $n > N_2$.

Hence, provided $n > \max N_1, N_2$, we have that $s_n t_n > M$. Since M is arbitrary, this proves that $\lim_{n\to\infty} (s_n t_n) = \infty$.

(4) Prove that the sequence below is monotone and bounded. Next find its limit.

$$s_1 = 1$$
, $s_{n+1} = \frac{1}{5}(s_n + 7)$, $n \ge 1$.

Proof. Note that $s_1 = 1$, $s_2 = \frac{1}{5}(1+7) = \frac{8}{5}$.

Claim: $s_n \leq 2$. Proof by induction:

$$s_1 = 1 < 2.$$

Assume $s_n \leq 2$.

Then
$$s_{n+1} = \frac{1}{5}(s_n + 7) \le s_{n+1} = \frac{1}{5}(2+7) = \frac{9}{5} < 2$$
.

Claim: $s_{n+1} \geq s_n$. Proof by induction:

$$s_2 < s_1$$
.

Assume
$$s_{n+1} \ge s_n$$
.
Then $s_{n+2} = \frac{1}{5}(s_{n+1} + 7) \ge \frac{1}{5}(s_n + 7) = s_{n+1}$.

Since (s_n) is monotone and bounded, then it is convergent. Thus

$$s = \lim s_{n+1} = \lim \frac{1}{5}(s_n + 7) = \frac{1}{5}(s + 7).$$

Hence

$$5s = s + 7$$
 and $s = \frac{7}{4}$.

- (5) Let (a_n) and (b_n) be monotone sequences. Prove or give a counterexample.
 - (a) The sequence (c_n) given by $c_n = a_n + b_n$ is monotone.

FALSE. Let $(a_n) = (1, 2, 2, 2, ...)$ and $(b_n) = (2, 2, 1, 1, ...)$. Then $(c_n) =$ $(a_n + b_n) = (3, 4, 3, 3, ...)$ is not monotone.

(b) The sequence (c_n) given by $c_n = a_n b_n$ is monotone.

FALSE. Let $(a_n) = (1, 2, 2, 2, ...)$ and $(b_n) = (2, 2, 1, 1, ...)$. Then $(c_n) =$ $(a_n b_n) = (2, 4, 2, 2, ...)$ is not monotone.