HW 6

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) [Prob. 4] Find an example of a sequence of real numbers satisfying each set of properties.
(a) Cauchy, but not monotone.
(b) Monotone, but not Cauchy.
(c) Bounded, but not Cauchy.
(2) [Prob. 7] Prove or give a counterexample.
(a) Every bounded sequence has a Cauchy subsequence.
(b) Every monotone sequence has a bounded subsequence.
(c) Every convergent sequence can be represented as the sum of two oscillating sequences.
(3) [Prob. 13] Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences.
(a) Prove that $\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\lim \sup t_{n}$.
(b) Find an example to show that equality may not hold in part (a).
(4) [Prob 4] Show that each series is divergent.
(a) $\sum(-1)^{n}$
(b) $\sum \frac{n}{2 n+1}$
(c) $\sum \cos \frac{n \pi}{2}$
(5) [Prob 5] Find the sum of each series.
(a) $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$
(b) $\sum_{n=1}^{\infty}\left(-\frac{3}{4}\right)^{n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$
(6) [Prob 8] Let (a_{n}) be a sequence of nonnegative real numbers. Prove that $\sum a_{n}$ converges iff the sequence of partial sums is bounded.
(7) [Prob 9] Determine whether or not the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ converges. Justify your answer.
(8) [Prob 10] Let $\left(x_{n}\right)$ be a sequence of real numbers and let $y_{n}=x_{n}-x_{n+1}$ for each $n \in \mathbb{N}$.
(a) Prove that the series $\sum_{n=1}^{\infty} y_{n}$ converges iff the sequence $\left(x_{n}\right)$ converges.
(b) If $\sum_{n=1}^{\infty} y_{n}$ converges, what is the sum?

