
Math 3333 Name: SOLUTION

HW 6

Please, write clearly and justify all your statements using the material cov-
ered in class to get credit for your work.

(1) [3 Pts] Find an example of a sequence of real numbers satisfying each
set of properties.
(a) Cauchy, but not monotone.

an =
(−1)n

n

(b) Monotone, but not Cauchy.

an = n

(c) Bounded, but not Cauchy.

an = (−1)n

(2) [3 Pts] Prove or give a counterexample.
(a) Every bounded sequence has a Cauchy subsequence.
TRUE. By Bolzano-Weierstrass Lemma, every bounded sequence has a con-

vergent subsequence. Since every convergent sequence is Cauchy, then every
bounded sequence has a Cauchy subsequence.
(b) Every monotone sequence has a bounded subsequence.
FALSE. The sequence (n) is monotone but has no bounded subsequence.
(c) Every convergent sequence can be represented as the sum of two oscil-

lating sequences.
TRUE. Let (sn) be a convergent sequence with lim sn = s. Next set an =

sn
2 + (−1)n and bn = sn

2 − (−1)n. Then it is true that sn = an + bn and
that (an) and (bn) are oscillating sequences. In fact lim sup an = s

2 + 1 and
lim inf an =

s
2 − 1. Similarly, lim sup bn =

s
2 + 1 and lim inf bn =

s
2 − 1.

(3) [3 Pts] Let (sn) and (tn) be bounded sequences.
(a) Prove that lim sup(sn + tn) ≤ lim sup sn + lim sup tn.
(b) Find an example to show that equality may not hold in part (a).
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(a) Proof. Since (sn) and (tn) are bounded sequences, then there are s, t ∈ R
such that s = lim sup sn and t = lim sup tn. By definition, given ε > 0, there
exists N1 = N1(ε) ∈ N such that sn < s+ε/2 if n > N1. Similarly, there exists
N2 = N2(ε) ∈ N such that tn < t + ε/2 if n > N2. Set N = max(N1, N2). It
follows that, if n > N then

sn + tn < s+ t+ ε.

Since ε is arbitrary, we conclude that lim sup(sn+tn) ≤ lim sup sn+lim sup tn.
(b) Let (sn) = (1, 0, 1, 0, . . . ) and (tn) = (0, 1, 0, 1, . . . ). Then

1 = lim sup(sn + tn) < lim sup(sn) + lim sup(tn) = 2.

(4) [3 Pts] Show that each series is divergent.
(a)

∑
(−1)n

The series diverges since the sequence an = (−1)n is not convergent to 0
(in fact it is not convergent).

(b)
∑

n
2n+1

The series diverges since the sequence an = n
2n+1 is not convergent to 0 (in

fact it converges to 1
2).

(c)
∑

cos nπ2

The series diverges since the sequence an = cos nπ2 is not convergent to 0. In
fact (an) is not convergent as one can prove by noticing that the subsequences
(a2n+1) and (a4m) have different limits, namely, lim a2n+1 = 0 and lim a4m = 1.

(5) [3 Pts] Find the sum of each series.
(a)

∑∞
n=1

1
3n

Using the formula for the geometric series,
∑∞

n=0
1
3n = 1

1−1/3 = 3
2. Hence∑∞

n=1
1
3n = 3

2 − 1 = 1
2.

(b)
∑∞

n=1(−3
4)
n
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Using the formula for the geometric series,
∑∞

n=0(−3
4)
n = 1

1+3/4 =
4
7. Hence∑∞

n=1(−3
4)
n = 4

7 − 1 = −3
7.

(c)
∑∞

n=2
1

n(n−1)

Observe that
N∑
n=2

1

n(n− 1)
=

N∑
n=2

1

(n− 1)
− 1

n
= 1− 1

2
+
1

2
− 1

3
+ · · ·− 1

N − 1
+

1

N − 1
− 1

N
.

Hence
∑∞

n=2
1

n(n−1) = limN→∞
∑N

n=2
1

n(n−1) = limN→∞(1− 1
N ) = 1.

(6) [3 Pts] Let (an) be a sequence of nonnegative real numbers. Prove that∑
an converges iff the sequence of partial sums is bounded.

Proof. Since an ≥ 0 for all n, then the sequence of partial sums (sN) =
(
∑

n≤N an) is monotone nondecreasing. It follows by the Monotone Conver-
gence Theorem of sequences that (sN) converges iff it is bounded.

(7) [3 Pts] Determine whether or not the series
∑∞

n=1
1√

n+1+
√
n

converges.

Justify your answer.

Observe that
∞∑
n=1

1√
n+ 1 +

√
n
=

∞∑
n=1

√
n+ 1−

√
n

n+ 1− n
=

∞∑
n=1

√
n+ 1−

√
n

The analysis of partial sums gives that

N∑
n=1

1√
n+ 1 +

√
n

=
N∑
n=1

√
n+ 1−

√
n

=
√
2−
√
1 +
√
3−
√
2 + · · ·+

√
N + 1−

√
N

=
√
N + 1− 1.

Hence
∑∞

n=1
1√

n+1+
√
n
= limN→∞

√
N + 1− 1 =∞. This shows that the series

diverges.

(8) [3 Pts] Let (xn) be a sequence of real numbers and let yn = xn − xn+1

for each n ∈ N.
(a) Prove that the series

∑∞
n=1 yn converges iff the sequence (xn) converges.
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(b) If
∑∞

n=1 yn converges, what is the sum?
Proof (a-b). A direct computation on the sequence of partial sums (sN) =

(
∑N

n=1 yn) shows that

N∑
n=1

yn =
N∑
n=1

(xn−xn+1) = x1−x2+x2−x3+· · ·−xN+xN−xN+1 = x1−xN+1.

It follows from the last equation that
∑∞

n=1 yn converges iff (xn) converges.
If limxn = L, it then follows from the calculation above that

∞∑
n=1

yn = lim
N→∞

(x1 − xN+1) = x1 − L.


