HW 6

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) [3 Pts] Find an example of a sequence of real numbers satisfying each set of properties.
(a) Cauchy, but not monotone.

$$
a_{n}=\frac{(-1)^{n}}{n}
$$

(b) Monotone, but not Cauchy.

$$
a_{n}=n
$$

(c) Bounded, but not Cauchy.

$$
a_{n}=(-1)^{n}
$$

(2) [3 Pts] Prove or give a counterexample.
(a) Every bounded sequence has a Cauchy subsequence.

TRUE. By Bolzano-Weierstrass Lemma, every bounded sequence has a convergent subsequence. Since every convergent sequence is Cauchy, then every bounded sequence has a Cauchy subsequence.
(b) Every monotone sequence has a bounded subsequence.

FALSE. The sequence (n) is monotone but has no bounded subsequence.
(c) Every convergent sequence can be represented as the sum of two oscillating sequences.

TRUE. Let $\left(s_{n}\right)$ be a convergent sequence with $\lim s_{n}=s$. Next set $a_{n}=$ $\frac{s_{n}}{2}+(-1)^{n}$ and $b_{n}=\frac{s_{n}}{2}-(-1)^{n}$. Then it is true that $s_{n}=a_{n}+b_{n}$ and that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are oscillating sequences. In fact $\lim \sup a_{n}=\frac{s}{2}+1$ and $\lim \inf a_{n}=\frac{s}{2}-1$. Similarly, $\limsup b_{n}=\frac{s}{2}+1$ and $\lim \inf b_{n}=\frac{s}{2}-1$.
(3) [3 Pts] Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences.
(a) Prove that $\lim \sup \left(s_{n}+t_{n}\right) \leq \limsup s_{n}+\lim \sup t_{n}$.
(b) Find an example to show that equality may not hold in part (a).
(a) Proof. Since (s_{n}) and $\left(t_{n}\right)$ are bounded sequences, then there are $s, t \in \mathbb{R}$ such that $s=\limsup s_{n}$ and $t=\limsup t_{n}$. By definition, given $\epsilon>0$, there exists $N_{1}=N_{1}(\epsilon) \in \mathbb{N}$ such that $s_{n}<s+\epsilon / 2$ if $n>N_{1}$. Similarly, there exists $N_{2}=N_{2}(\epsilon) \in \mathbb{N}$ such that $t_{n}<t+\epsilon / 2$ if $n>N_{2}$. Set $N=\max \left(N_{1}, N_{2}\right)$. It follows that, if $n>N$ then

$$
s_{n}+t_{n}<s+t+\epsilon .
$$

Since ϵ is arbitrary, we conclude that $\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\lim \sup t_{n}$.
(b) Let $\left(s_{n}\right)=(1,0,1,0, \ldots)$ and $\left(t_{n}\right)=(0,1,0,1, \ldots)$. Then

$$
1=\lim \sup \left(s_{n}+t_{n}\right)<\lim \sup \left(s_{n}\right)+\lim \sup \left(t_{n}\right)=2 .
$$

(4) $[3 \mathrm{Pts}]$ Show that each series is divergent.
(a) $\sum(-1)^{n}$

The series diverges since the sequence $a_{n}=(-1)^{n}$ is not convergent to 0 (in fact it is not convergent).
(b) $\sum \frac{n}{2 n+1}$

The series diverges since the sequence $a_{n}=\frac{n}{2 n+1}$ is not convergent to 0 (in fact it converges to $\frac{1}{2}$).
(c) $\sum \cos \frac{n \pi}{2}$

The series diverges since the sequence $a_{n}=\cos \frac{n \pi}{2}$ is not convergent to 0 . In fact $\left(a_{n}\right)$ is not convergent as one can prove by noticing that the subsequences $\left(a_{2 n+1}\right)$ and $\left(a_{4 m}\right)$ have different limits, namely, $\lim a_{2 n+1}=0$ and $\lim a_{4 m}=1$.
(5) [3 Pts] Find the sum of each series.
(a) $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$

Using the formula for the geometric series, $\sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{1}{1-1 / 3}=\frac{3}{2}$. Hence $\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\frac{3}{2}-1=\frac{1}{2}$.
(b) $\sum_{n=1}^{\infty}\left(-\frac{3}{4}\right)^{n}$

Using the formula for the geometric series, $\sum_{n=0}^{\infty}\left(-\frac{3}{4}\right)^{n}=\frac{1}{1+3 / 4}=\frac{4}{7}$. Hence $\sum_{n=1}^{\infty}\left(-\frac{3}{4}\right)^{n}=\frac{4}{7}-1=-\frac{3}{7}$.
(c) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$

Observe that
$\sum_{n=2}^{N} \frac{1}{n(n-1)}=\sum_{n=2}^{N} \frac{1}{(n-1)}-\frac{1}{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdots-\frac{1}{N-1}+\frac{1}{N-1}-\frac{1}{N}$.
Hence $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\lim _{N \rightarrow \infty} \sum_{n=2}^{N} \frac{1}{n(n-1)}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N}\right)=1$.
(6) [3 Pts] Let (a_{n}) be a sequence of nonnegative real numbers. Prove that $\sum a_{n}$ converges iff the sequence of partial sums is bounded.

Proof. Since $a_{n} \geq 0$ for all n, then the sequence of partial sums $\left(s_{N}\right)=$ $\left(\sum_{n \leq N} a_{n}\right)$ is monotone nondecreasing. It follows by the Monotone Convergence Theorem of sequences that $\left(s_{N}\right)$ converges iff it is bounded.
(7) [3 Pts] Determine whether or not the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ converges. Justify your answer.

Observe that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sum_{n=1}^{\infty} \sqrt{n+1}-\sqrt{n}
$$

The analysis of partial sums gives that

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{1}{\sqrt{n+1}+\sqrt{n}} & =\sum_{n=1}^{N} \sqrt{n+1}-\sqrt{n} \\
& =\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\cdots+\sqrt{N+1}-\sqrt{N} \\
& =\sqrt{N+1}-1
\end{aligned}
$$

Hence $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=\lim _{N \rightarrow \infty} \sqrt{N+1}-1=\infty$. This shows that the series diverges.
(8) [3 Pts] Let $\left(x_{n}\right)$ be a sequence of real numbers and let $y_{n}=x_{n}-x_{n+1}$ for each $n \in \mathbb{N}$.
(a) Prove that the series $\sum_{n=1}^{\infty} y_{n}$ converges iff the sequence $\left(x_{n}\right)$ converges.
(b) If $\sum_{n=1}^{\infty} y_{n}$ converges, what is the sum?

Proof (a-b). A direct computation on the sequence of partial sums $\left(s_{N}\right)=$ $\left(\sum_{n=1}^{N} y_{n}\right)$ shows that
$\sum_{n=1}^{N} y_{n}=\sum_{n=1}^{N}\left(x_{n}-x_{n+1}\right)=x_{1}-x_{2}+x_{2}-x_{3}+\cdots-x_{N}+x_{N}-x_{N+1}=x_{1}-x_{N+1}$. It follows from the last equation that $\sum_{n=1}^{\infty} y_{n}$ converges iff $\left(x_{n}\right)$ converges. If $\lim x_{n}=L$, it then follows from the calculation above that

$$
\sum_{n=1}^{\infty} y_{n}=\lim _{N \rightarrow \infty}\left(x_{1}-x_{N+1}\right)=x_{1}-L
$$

