Name:

<u>HW 6</u>

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) Find an example of a sequence of real numbers satisfying each set of properties.

(a) Cauchy, but not monotone.

(b) Monotone, but not Cauchy.

(c) Bounded, but not Cauchy.

(2) Prove or give a counterexample.

(a) Every bounded sequence has a Cauchy subsequence.

(b) Every monotone sequence has a bounded subsequence.

(c) Every convergent sequence can be represented as the sum of two oscillating sequences.

(3) Let (s_n) and (t_n) be bounded sequences.

(a) Prove that $\limsup(s_n + t_n) \le \limsup s_n + \limsup t_n$.

- (b) Find an example to show that equality may not hold in part (a).
- (4) Show that each series is divergent.

(a)
$$\sum (-1)^r$$

(b)
$$\sum \frac{n}{2n+1}$$

(c) $\sum \cos \frac{n\pi}{2}$

(5) Find the sum of each series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

(b) $\sum_{n=1}^{\infty} (-\frac{3}{4})^n$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

(6) Let (a_n) be a sequence of nonnegative real numbers. Prove that $\sum a_n$ converges iff the sequence of partial sums is bounded.

(7) Determine whether or not the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ converges. Justify your answer.

(8) Let (x_n) be a sequence of real numbers and let $y_n = x_n - x_{n+1}$ for each $n \in \mathbb{N}$.

(a) Prove that the series $\sum_{n=1}^{\infty} y_n$ converges iff the sequence (x_n) converges. (b) If $\sum_{n=1}^{\infty} y_n$ converges, what is the sum?