HW 7

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is not continuous at $x=0$.
Let $x_{n}=2 /(n \pi)$. Clearly $\lim _{n} x_{n}=0$. However $\sin x_{n}=\sin n \pi$ and $\lim _{n} \sin n \pi=D N E$. This shows that $\lim f\left(x_{x}\right) \neq f(0)$, hence f is not continuous at $x=0$.
(2) Let

$$
f(x)= \begin{cases}\frac{x^{2}+4 x-21}{x-3} & \text { if } x \neq 3 \\ a & \text { if } x=3\end{cases}
$$

Define a so that f will be continuous at $x=3$.
Note that $\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x-3}=\lim _{x \rightarrow 3} \frac{(x+7)(x-3)}{x-3}=10$. If we set $f(3)=10$, then $\lim _{x \rightarrow 2} f(x)=10=f(3)$ and the function is continuous at $x=3$.
(3) Determine a condition (a bound independent on x) on $|x-1|$ such that
(a) $\left|x^{2}-1\right|<1 / 2$.
(b) $\left|x^{2}-1\right|<0.01$.

Write $\left|x^{2}-1\right|=|x-1||x+1|$. If $|x-1|<1$, then $|x|<2$ and $\left|x^{2}-1\right|=$ $|x+1||x-1|<(|x|+1)|x-1|<3|x-1|$.

Hence, to have $\left|x^{2}-1\right|<\epsilon$, it is sufficient to require that $3|x-1|<\epsilon$ and $|x-1|<1$. Let $\delta=\min (1, \epsilon / 3)$. Then, if $|x-1|<\delta$ it follows that $\left|x^{2}-1\right|<\epsilon$.

Thus, for part (a), we can choose $|x-1|<1 / 6$; for part (b), we can choose $|x-1|<\frac{1}{3} \cdot 0.01$.
(4) Let $f: D \rightarrow \mathbb{R}$ and c be an accumulation point of D. Suppose that $\lim _{x \rightarrow c} f(x)=L$.
(a) Prove that $\lim _{x \rightarrow c}|f(c)|=|L|$.

Proof. By the definition, given $\epsilon>0$, there exists a $\delta>0$ such that if $|x-c|<\delta$ and $x \in D$, then $|f(x)-L|<\epsilon$. The proof then follows by the inequality

$$
||f(x)|-|L||=\|f(x)-L+L|-|L \| \leq|f(x)-L| .
$$

(b) If $f(x) \geq 0$ for all $x \in D$, prove that $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}$.

Proof. We consider first the case where $L>0$. In this case, we have that given any $\epsilon>0$ there exists a $\delta>0$ such that if $|x-c|<\delta$ and $x \in D$, then $|f(x)|<\epsilon^{2}$. This implies that $\sqrt{f(x)}<\epsilon$, hence $\lim _{x \rightarrow c} \sqrt{f(x)}=0$.

Let us consider now the case where $L>0$. Given any $\epsilon>0$ there exists a $\delta>0$ such that if $|x-c|<\delta$ and $x \in D$, then $|f(x)-L|<\epsilon / \sqrt{L}$. This implies that

$$
|\sqrt{f(x)}-\sqrt{L}|=\frac{|f(x)-L|}{\sqrt{f(x)}+\sqrt{L}} \leq \frac{|f(x)-L|}{\sqrt{L}}<\epsilon
$$

Hence $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}$.

