<u>HW 7</u>

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Show that f is not continuous at x = 0.

Let $x_n = 2/(n\pi)$. Clearly $\lim_n x_n = 0$. However $\sin x_n = \sin n\pi$ and $\lim_n \sin n\pi = DNE$. This shows that $\lim_n f(x_x) \neq f(0)$, hence f is not continuous at x = 0.

(2) Let

$$f(x) = \begin{cases} \frac{x^2 + 4x - 21}{x - 3} & \text{if } x \neq 3\\ a & \text{if } x = 3. \end{cases}$$

Define a so that f will be continuous at x = 3.

Note that $\lim_{x\to 3} \frac{x^2+4x-21}{x-3} = \lim_{x\to 3} \frac{(x+7)(x-3)}{x-3} = 10$. If we set f(3) = 10, then $\lim_{x\to 2} f(x) = 10 = f(3)$ and the function is continuous at x = 3.

(3) Determine a condition (a bound independent on x) on |x − 1| such that
(a) |x² − 1| < 1/2.
(b) |x² − 1| < 0.01.

Write $|x^2 - 1| = |x - 1||x + 1|$. If |x - 1| < 1, then |x| < 2 and $|x^2 - 1| = |x + 1||x - 1| < (|x| + 1)|x - 1| < 3|x - 1|$.

Hence, to have $|x^2 - 1| < \epsilon$, it is sufficient to require that $3|x - 1| < \epsilon$ and |x - 1| < 1. Let $\delta = \min(1, \epsilon/3)$. Then, if $|x - 1| < \delta$ it follows that $|x^2 - 1| < \epsilon$.

Thus, for part (a), we can choose |x-1| < 1/6; for part (b), we can choose $|x-1| < \frac{1}{3} \cdot 0.01$.

(4) Let $f: D \to \mathbb{R}$ and c be an accumulation point of D. Suppose that $\lim_{x\to c} f(x) = L$.

(a) Prove that $\lim_{x\to c} |f(c)| = |L|$.

Proof. By the definition, given $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - c| < \delta$ and $x \in D$, then $|f(x) - L| < \epsilon$. The proof then follows by the inequality

$$||f(x)| - |L|| = ||f(x) - L + L| - |L|| \le |f(x) - L|.$$

(b) If $f(x) \ge 0$ for all $x \in D$, prove that $\lim_{x\to c} \sqrt{f(x)} = \sqrt{L}$.

Proof. We consider first the case where L > 0. In this case, we have that given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - c| < \delta$ and $x \in D$, then $|f(x)| < \epsilon^2$. This implies that $\sqrt{f(x)} < \epsilon$, hence $\lim_{x\to c} \sqrt{f(x)} = 0$.

Let us consider now the case where L > 0. Given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - c| < \delta$ and $x \in D$, then $|f(x) - L| < \epsilon/\sqrt{L}$. This implies that

$$|\sqrt{f(x)} - \sqrt{L}| = \frac{|f(x) - L|}{\sqrt{f(x)} + \sqrt{L}} \le \frac{|f(x) - L|}{\sqrt{L}} < \epsilon.$$

Hence $\lim_{x\to c} \sqrt{f(x)} = \sqrt{L}$.