HW 8

(1) Let $f: D \rightarrow \mathbb{R}$ be continuous at $c \in D$. Prove that there exists an $M>0$ and a neighborhood U of c such that $|f(x)| \leq M$ for all $x \in U \cap D$.

Proof. Since f is continuous at c, there exists a $\delta>0$ such that if $|x-c|<\delta$ and $x \in D$, then $|f(x)-f(c)|<1$. This implies that, for all $x \in D$ such that $|x-c|<\delta$, we have that $|f(x)| \leq 1+|f(c)|$.
(2) Determine the following limit

$$
\lim _{x \rightarrow 0-} \frac{4 x}{|x|}
$$

(a) using the sequential definition;
(b) using the $\epsilon-\delta$ definition.
(a) Let x_{n} be a sequence converging to 0^{-}. That is, $\lim _{n} x_{n}=0$ and, in addition, there is exists an $N>0$ such that $x_{n}<0$ if $n>N$. Then

$$
\lim _{x \rightarrow 0-} \frac{4 x}{|x|}=\lim _{n>N} \frac{4 x_{n}}{\left|x_{n}\right|}=\lim _{n>N} \frac{4 x_{n}}{\left(-x_{n}\right)}=4
$$

(b) Given $\epsilon>0$, let δ be any positive quantity. Then, if $-\delta<x<0$, we have that

$$
\left|\frac{4 x}{|x|}+4\right|=\left|\frac{4 x}{(-x)}+4\right|=|-4+4|=0<\epsilon .
$$

(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Show that f is not continuous at $x=0$.
(b) Show that f has the intermediate property on any interval $[a, b] \in \mathbb{R}$, that is, if k is any value between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.
(a) Let $x_{n}=\frac{1}{\pi / 2+\pi n}$. Then $\lim _{n} x_{n}=0$ but

$$
\lim _{n} f\left(x_{n}\right)=\lim _{n} \sin \left(\frac{\pi}{2}+\pi n\right)= \begin{cases}1 & \text { if } n \text { even } \\ -1 & \text { if nodd } .\end{cases}
$$

Hence f is not continuous at 0 .
(b) If $0<a<b$ or if $a<b<0$, then f is continuous on $[a, b]$ and the intermediate value property holds. Let us consider the case where $a<0$ and $b>0$. WLOG assume that $-1 \leq f(a)<k<f(b) \leq 1$ (the endpoints are due to the range of the function $\sin)$. By the Archimedean property, there is an n such that $0<\frac{1}{\pi / 2+\pi n}<b$. Clearly $0<\frac{1}{\pi / 2+\pi(n+1)}<b$. Note that f ranges continuously between -1 and 1 within the interval $x \in\left[\frac{1}{\pi / 2+\pi(n+1)}, \frac{1}{\pi / 2+\pi n}\right]$. Hence there is a c within this interval such that $f(c)=k$.
(4) Show that any polynomial p of odd degree has at least one real root.

Proof. Since p is a polynomial of odd degree, then either $\lim _{x \rightarrow \infty} p(x)=\infty$ and $\lim _{x \rightarrow-\infty} p(x)=-\infty$ or vice versa. In either case, this implies that $p(x)$ changes sign so that, by the Intermediate Value Theorem, there must be a point x_{0} where $p\left(x_{0}\right)=0$, that is, it must have one real root.
(5) Let $f:[a, b] \rightarrow[a, b]$ be continuous. Prove that f must have a fixed point, that is, there is $c \in[a, b]$ such that $f(c)=c$. [Hint: Set $h(x)=f(x)-x$ and apply the Intermediate Value Theorem.]

Proof. Set $h(x)=f(x)-x$. If $f(a)=a$ or $f(b)=b$, then the proof is complete. Let us consider the case where $f(a) \neq a$ and $f(b) \neq b$. Consider first the case where $f(a)>a$ and $f(b)<b$. It follows that $h(a)>0$ and $h(b)<0$. Hence, by the Intermediate Value Theorem, there must be a point c where $h(c)=0$ and $f(c)=c$. The case $f(a)<a$ and $f(b)>b$ is similar. The cases where $f(a)>a$ and $f(b)>b>a$ or $f(a)<a<b$ and $f(b)<b$ are not possible since they violate the assumption that $f:[a, b] \rightarrow[a, b]$ continuously.

