
Math 3333 Name: SOLUTION

HW 8

Please, write clearly and justify all your statements using the material cov-
ered in class to get credit for your work.

(1) Prove that the function f(x) = 1
x on [2,∞) is uniformly continuous by

verifying the ϵ− δ property.
Proof. Observe that, for any x, y ∈ [2,∞),

|1
x
− 1

y
| = |y − x|

xy
≤ |y − x|

4
.

Hence, given any ϵ > 0, set δ = 4ϵ, then |x− y| < δ implies that | 1x −
1
y | < ϵ.

(2) Let f : D → R be continuous at c ∈ D. Prove that there exists an
M > 0 and a neighborhood U of c such that |f(x)| ≤ M for all x ∈ U ∩D.

Proof. Since f is continuous at c, there exists a δ > 0 such that if |x−c| < δ
and x ∈ D, then |f(x)− f(c)| < 1. This implies that, for all x ∈ D such that
|x− c| < δ, we have that |f(x)| ≤ 1 + |f(c)|.

(3) Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Proof. Since f(x) =
√
x is continuous on the close interval [0, 2], it is also

uniformly continuous on [0, 2]. It follows that, given any ϵ > 0, there is a δ1
such that |x− y| < δ1 implies |

√
x−√

y| < ϵ for all x, y ∈ [0, 2].
If x > 1, observe that

|
√
x−√

y| = |x− y|√
x+

√
y
≤ |x− y|

2

Hence, given any ϵ > 0, if we set δ2 = 2ϵ, it follows that |x− y| < δ2 implies
|
√
x−√

y| < ϵ for all x, y ∈ [1,∞).
Set δ = min{δ1, δ2}. It then follows that |x−y| < δ implies that |

√
x−√

y| <
ϵ for all x, y ∈ [0,∞).

Note: For the proof to be complete, it is required for the intervals [0, 2] and [1,∞) to have a

nonempty overlap. If we only prove the result for x ∈ [0, 1] and x ∈ [1,∞) then we cannot deal with

the situation of points |x− y| with x ∈ [0, 1] and y ∈ [2,∞).
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(4) Let f and g be two real-valued functions that are uniformly continuous
on a set D. Prove that f + g is uniformly continuous on D.
Proof. By definition, given ϵ > 0, there is a δ1 > 0 such that |x− y| < δ1

implies that |f(x) − f(y)| < ϵ/2 for all x, y ∈ D, and there is a δ2 > 0
such that x − y| < δ2 implies that |g(x) − g(y)| < ϵ/2 for all x, y ∈ D. Set
δ = min{δ1, δ2}. It then follows that |x− y| < δ implies that

|(f + g)(x)− (f + g)(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)| < ϵ/2 + ϵ/2 = ϵ

x, y ∈ D.

(5) Find two real-valued functions f and g that are uniformly continuous
on a set D, but such that their product f g is not uniformly continuous on D.
Consider f(x) = x and g(x) = x, x ∈ R. Then f, g are uniformly continu-

ous but h(x) = f(x) g(x) = x2 is not uniformly continuous.

(6) Suppose that f : R → R is continuous and periodic. Prove that f is
bounded and uniformly continuous on R.
Proof. Let T be the interval of periodicity of f , that is f(x) = f(x + T )

for any x. Since f is continuous, then it is uniformly continuous on the
close interval [0, 2T ]. Hence, given any ϵ > 0, there is a δ > 0 such that
|x − y| < δ implies that |f(x) − f(y)| < ϵ, for any x, y ∈ [0, 2T ]. Without
loss of generality, we assume that δ < T . Due to this assumption on δ, for
any x, y ∈ R such that |x − y| < δ, there is a n ∈ Z such that x + nT, y +
nT ∈ [0, 2T ]. Hence |x − y| = |(x − nT ) − (y − nT )| < δ implies that
|f(x)− f(y)| = |f(x+ nT )− f(y + nT )| < ϵ.
(7) Determine the following limit

lim
x→0−

4x

|x|

(a) using the sequential definition;
(b) using the ϵ− δ definition.

(a) Let xn be a sequence converging to 0−. That is, limn xn = 0 and, in
addition, there is exists an N > 0 such that xn < 0 if n > N . Then

lim
x→0−

4x

|x|
= lim

n>N

4xn
|xn|

= lim
n>N

4xn
(−xn)

= 4.
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(b) Given ϵ > 0, let δ be any positive quantity. Then, if −δ < x < 0, we
have that ∣∣∣∣4x|x| + 4

∣∣∣∣ = ∣∣∣∣ 4x

(−x)
+ 4

∣∣∣∣ = | − 4 + 4| = 0 < ϵ.


