HW 9

(1) Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and that $f(r)=0$ for every rational number $r \in(a, b)$. Prove that $f(x)=0$ for all $x \in(a, b)$.
(2) Let $f: D \rightarrow \mathbb{R}$ and $c \in D$. We say that f is bounded on a neighborhood of c if there exists a neighborhood U of c and a number M such that $|f(x)| \leq M$ for all $x \in U \cap D$
(a) Suppose that f is bounded on a neighborhood of each x in D and that D is compact. Prove that f is bounded on D.
(b) Suppose that f is bounded on a neighborhood of each x in D and that D is not compact. Show that f is not necessarily bounded on D, even when f is continuous.
(c) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a limit at each x in $[a, b]$. Prove that f is bounded on $[a, b]$.
(3) Prove that the function $f(x)=\frac{1}{x}$ on $[2, \infty)$ is uniformly continuous by verifying the $\epsilon-\delta$ property.
(4) Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.
(5) Let f and g be two real-valued functions that are uniformly continuous on a set D. Prove that $f+g$ is uniformly continuous on D.
(6) Find two real-valued functions f and g that are uniformly continuous on a set D, but such that their product $f g$ is not uniformly continuous on D.

