HW 9

(1) Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and that $f(r)=0$ for every rational number $r \in(a, b)$. Prove that $f(x)=0$ for all $x \in(a, b)$.

Proof. Let $y \in(a, b) \backslash Q$. Arguing by contradiction, suppose $f(y)=\alpha \neq 0$. By the continuity of f, given any sequence $\left(x_{n}\right) \subset(a, b)$ converging to y, we have that $\lim f\left(x_{n}\right)=\alpha$. However, if we choose $\left(x_{n}\right) \subset(a, b) \cap Q$, we have that $\lim f\left(x_{n}\right)=0$. This is a contradiction. Thus it must be $\alpha=0$.
(2) Let $f: D \rightarrow \mathbb{R}$ and $c \in D$. We say that f is bounded on a neighborhood of c if there exists a neighborhood U of c and a number M such that $|f(x)| \leq M$ for all $x \in U \cap D$
(a) Suppose that f is bounded on a neighborhood of each x in D and that D is compact. Prove that f is bounded on D.
(b) Suppose that f is bounded on a neighborhood of each x in D and that D is not compact. Show that f is not necessarily bounded on D, even when f is continuous.
(c) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a limit at each x in $[a, b]$. Prove that f is bounded on $[a, b]$.
(a) Proof. For every $x \in D$ there is a neighborhood U_{x} of x and a number M_{x} such that $|f(y)| \leq M_{x}$ for all $y \in U_{x} \cap D$. The set $\left\{U_{x}: x \in D\right\}$ is an open cover of D and D is compact. Hence there exists and open subcover of D; that is, we can find a finite set $x_{1}, \ldots, x_{m} \in D$ such that $D \subset \cup_{i=1}^{m} U_{x_{i}}$. Let $M=\max \left\{M_{x_{i}}: i=1, \ldots, m\right\}$. It then follows that $|f(x)| \leq M$ for all $x \in D$.
(b) Let $f(x)=\frac{1}{x}, D=(0, \infty) . f$ is bounded on a neighborhood of each x in D but f is not bounded.
(c) Proof. For every $x \in[a, b]$, we have that $\lim _{y \rightarrow x} f(y)=L_{x}$. By the properties of a limit, there is a deleted neighborhood U_{x}^{*} of x and a number M_{x}^{*} such that $|f(y)| \leq M_{x}^{*}$ for all $y \in U_{x}^{*}$. It then follows that $|f(y)| \leq$ $M_{x}=\max \left\{f(x), M_{x}^{*}\right\}$ for all $y \in U_{x}$. Since $[a, b]$ is a compact set, it follows from part (a) above that we can find a finite set $x_{1}, \ldots, x_{m} \in[a, b]$ such that $|f(x)| \leq \max \left\{M_{x_{1}}, \ldots, M_{x_{m}}\right\}$ for all $x \in[a, b]$.
(3) Prove that the function $f(x)=\frac{1}{x}$ on $[2, \infty)$ is uniformly continuous by verifying the $\epsilon-\delta$ property.

Proof. Observe that, for any $x, y \in[2, \infty)$

$$
\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|y-x|}{x y} \leq \frac{|y-x|}{4} .
$$

Hence, given any $\epsilon>0$, set $\delta=4 \epsilon$, then $|x-y|<\delta$ implies that $\left|\frac{1}{x}-\frac{1}{y}\right|<\epsilon$.
(4) Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Proof. Since $f(x)=\sqrt{x}$ is continuous on the close interval $[0,2]$, it is also uniformly continuous on $[0,2]$. It follows that, given any $\epsilon>0$, there is a δ_{1} such that $|x-y|<\delta_{1}$ implies $|\sqrt{x}-\sqrt{y}|<\epsilon$ for all $x, y \in[0,2]$.

If $x>1$, observe that

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq \frac{|x-y|}{2}
$$

Hence, given any $\epsilon>0$, if we set $\delta_{2}=2 \epsilon$, it follows that $|x-y|<\delta_{2}$ implies $|\sqrt{x}-\sqrt{y}|<\epsilon$ for all $x, y \in[1, \infty)$.
Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. It then follows that $|x-y|<\delta$ implies that $|\sqrt{x}-\sqrt{y}|<$ ϵ for all $x, y \in[0, \infty)$.

Note: For the proof to be complete, it is required for the intervals $[0,2]$ and $[1, \infty)$ to have a nonempty overlap. If we only prove the result for $x \in[0,1]$ and $x \in[1, \infty)$ then we cannot deal with the situation of points $|x-y|$ with $x \in[0,1]$ and $y \in[2, \infty)$.
(5) Let f and g be two real-valued functions that are uniformly continuous on a set D. Prove that $f+g$ is uniformly continuous on D.

Proof. By definition, given $\epsilon>0$, there is a $\delta_{1}>0$ such that $|x-y|<\delta_{1}$ implies that $|f(x)-f(y)|<\epsilon / 2$ for all $x, y \in D$, and there is a $\delta_{2}>0$ such that $x-y \mid<\delta_{2}$ implies that $|g(x)-g(y)|<\epsilon / 2$ for all $x, y \in D$. Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. It then follows that $|x-y|<\delta$ implies that

$$
|(f+g)(x)-(f+g)(y)| \leq|f(x)-f(y)|+|g(x)-g(y)|<\epsilon / 2+\epsilon / 2=\epsilon
$$

$x, y \in D$.
(6) Find two real-valued functions f and g that are uniformly continuous on a set D, but such that their product $f g$ is not uniformly continuous on D.

Consider $f(x)=x$ and $g(x)=x, x \in \mathbb{R}$. Then f, g are uniformly continuous but $h(x)=f(x) g(x)=x^{2}$ is not uniformly continuous.

