
Math 3333 Name: SOLUTION

HW 9

(1) Suppose that f : (a, b) → R is continuous and that f(r) = 0 for every
rational number r ∈ (a, b). Prove that f(x) = 0 for all x ∈ (a, b).

Proof. Let y ∈ (a, b)\Q. Arguing by contradiction, suppose f(y) = α 6= 0.
By the continuity of f , given any sequence (xn) ⊂ (a, b) converging to y, we
have that lim f(xn) = α. However, if we choose (xn) ⊂ (a, b) ∩ Q, we have
that lim f(xn) = 0. This is a contradiction. Thus it must be α = 0.

(2) Let f : D → R and c ∈ D. We say that f is bounded on a neighborhood of
c if there exists a neighborhood U of c and a numberM such that |f(x)| ≤M
for all x ∈ U ∩D
(a) Suppose that f is bounded on a neighborhood of each x in D and that

D is compact. Prove that f is bounded on D.
(b) Suppose that f is bounded on a neighborhood of each x in D and that

D is not compact. Show that f is not necessarily bounded on D, even when
f is continuous.
(c) Suppose that f : [a, b]→ R has a limit at each x in [a, b]. Prove that f

is bounded on [a, b].

(a) Proof. For every x ∈ D there is a neighborhood Ux of x and a number
Mx such that |f(y)| ≤ Mx for all y ∈ Ux ∩ D. The set {Ux : x ∈ D} is an
open cover of D and D is compact. Hence there exists and open subcover of
D; that is, we can find a finite set x1, . . . , xm ∈ D such that D ⊂ ∪mi=1Uxi

.
Let M = max{Mxi

: i = 1, . . . ,m}. It then follows that |f(x)| ≤ M for all
x ∈ D.
(b) Let f(x) = 1

x , D = (0,∞). f is bounded on a neighborhood of each x in
D but f is not bounded.
(c) Proof. For every x ∈ [a, b], we have that limy→x f(y) = Lx. By the

properties of a limit, there is a deleted neighborhood U ∗x of x and a number
M ∗

x such that |f(y)| ≤ M ∗
x for all y ∈ U ∗x. It then follows that |f(y)| ≤

Mx = max{f(x),M∗
x} for all y ∈ Ux. Since [a, b] is a compact set, it follows

from part (a) above that we can find a finite set x1, . . . , xm ∈ [a, b] such that
|f(x)| ≤ max{Mx1

, . . . ,Mxm
} for all x ∈ [a, b].
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(3) Prove that the function f(x) = 1
x on [2,∞) is uniformly continuous by

verifying the ε− δ property.

Proof. Observe that, for any x, y ∈ [2,∞)

|1
x
− 1

y
| = |y − x|

xy
≤ |y − x|

4
.

Hence, given any ε > 0, set δ = 4ε, then |x− y| < δ implies that | 1x −
1
y | < ε.

(4) Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Proof. Since f(x) =
√
x is continuous on the close interval [0, 2], it is also

uniformly continuous on [0, 2]. It follows that, given any ε > 0, there is a δ1
such that |x− y| < δ1 implies |

√
x−√y| < ε for all x, y ∈ [0, 2].

If x > 1, observe that

|
√
x−√y| = |x− y|√

x+
√
y
≤ |x− y|

2

Hence, given any ε > 0, if we set δ2 = 2ε, it follows that |x− y| < δ2 implies
|
√
x−√y| < ε for all x, y ∈ [1,∞).

Set δ = min{δ1, δ2}. It then follows that |x−y| < δ implies that |
√
x−√y| <

ε for all x, y ∈ [0,∞).
Note: For the proof to be complete, it is required for the intervals [0, 2] and [1,∞) to have a

nonempty overlap. If we only prove the result for x ∈ [0, 1] and x ∈ [1,∞) then we cannot deal with

the situation of points |x− y| with x ∈ [0, 1] and y ∈ [2,∞).

(5) Let f and g be two real-valued functions that are uniformly continuous
on a set D. Prove that f + g is uniformly continuous on D.

Proof. By definition, given ε > 0, there is a δ1 > 0 such that |x− y| < δ1
implies that |f(x) − f(y)| < ε/2 for all x, y ∈ D, and there is a δ2 > 0
such that x − y| < δ2 implies that |g(x) − g(y)| < ε/2 for all x, y ∈ D. Set
δ = min{δ1, δ2}. It then follows that |x− y| < δ implies that

|(f + g)(x)− (f + g)(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)| < ε/2 + ε/2 = ε

x, y ∈ D.

(6) Find two real-valued functions f and g that are uniformly continuous
on a set D, but such that their product f g is not uniformly continuous on D.
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Consider f(x) = x and g(x) = x, x ∈ R. Then f, g are uniformly continu-
ous but h(x) = f(x) g(x) = x2 is not uniformly continuous.


