Name:

Quiz/HW 4

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) [6 Pts] Let (s_n) be a sequence such that $\lim_{n\to\infty} s_n = 0$ and (t_n) be a bounded sequence. Prove that the sequence $(s_n t_n)$ is convergent.

I will prove that $\lim_{n\to\infty} s_n t_n = 0$. Since (t_n) is bounded, there is an M > 0 such that $t_n < M$ for all $n \in \mathbb{N}$. Since $\lim_{n\to\infty} s_n = 0$, given any $\epsilon > 0$, there exists and $N = N(\epsilon)$ such that $|s_n| < \frac{\epsilon}{M}$ if n > N. It follows that, given $\epsilon > 0$, there exists $N = N(\epsilon)$ such that $|s_n t_n| < \frac{\epsilon}{M} M = \epsilon$ if n > N. This shows that $\lim_{n\to\infty} s_n t_n = 0$.

(2)[2 Pts] Prove or give a counterexamples:

(a) If (s_n) and (t_n) are divergent sequences, then $(s_n + t_n)$ diverges.

FALSE. Let $(s_n) = (n)$ and $(t_n) = (-n)$. $(s_n + t_n) = 0$ convergent.

(b) If (s_n) is convergent and (t_n) is bounded, then $(s_n t_n)$ converges.

FALSE. Let $(s_n) = 1$ and $(t_n) = (-1)^n$. $(s_n t_n) = 1$ divergent.