## Quiz 5

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.
(1) [5Pts] Prove that the sequence below is monotone and bounded. Next find its limit.

$$
s_{1}=2, \quad s_{n+1}=\frac{1}{4}\left(2 s_{n}+7\right), \quad n \geq 1 .
$$

Proof. Note that $s_{1}=2, s_{2}=\frac{1}{4}(4+7)=\frac{11}{4}>2$.
Claim: $s_{n} \leq 4$. Proof by induction:
$s_{1}=2 \leq 4$.
Assume $s_{n} \leq 4$.
Then $s_{n+1}=\frac{1}{4}\left(s_{n}+7\right) \leq \frac{11}{4}<4$.
Claim: $s_{n+1} \geq s_{n}$. Proof by induction:
$s_{2}>s_{1}$.
Assume $s_{n+1} \geq s_{n}$.
Then $s_{n+2}=\frac{1}{4}\left(2 s_{n+1}+7\right) \geq \frac{1}{4}\left(2 s_{n}+7\right)=s_{n+1}$.
Since $\left(s_{n}\right)$ is monotone nondecreasing and bounded above, then it is convergent. Thus

$$
s=\lim s_{n+1}=\lim \frac{1}{4}\left(2 s_{n}+7\right)=\frac{1}{4}(2 s+7) .
$$

Hence $4 s=2 s+7$ and $s=\frac{7}{2}$.
(1) [3Pts] Prove or give a counterexample:
(a) Every monotone sequence converges.

FALSE. $\left(s_{n}\right)=(n)$ is monotone but not convergent.
(b) If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are monotone sequences, then $\left(c_{n}\right)=\left(a_{n}+b_{n}\right)$ is also a monotone sequence.

FALSE. Let $\left(a_{n}\right)=(1,2,2,2, \ldots)$ and $\left(b_{n}\right)=(2,2,1,1, \ldots)$. Then $\left(c_{n}\right)=\left(a_{n}+\right.$ $\left.b_{n}\right)=(3,4,3,3, \ldots)$ is not monotone.
(c) If ( $a_{n}$ ) and ( $b_{n}$ ) are monotone non-decreasing sequences, then $\left(c_{n}\right)=\left(a_{n}+b_{n}\right)$ is also a monotone non-decreasing sequence.

TRUE. If $a_{n+1} \geq a_{n}$ and $b_{n+1} \geq b_{n}$, then $c_{n+1}=a_{n+1}+b_{n+1} \geq a_{n}+b_{n}=c_{n}$.

