Quiz 7

(a) 2 Pts$]$ Let

$$
h(x)=\frac{x^{2}+x-2}{x+2}
$$

Is h continuous at $x=-2$? Justify your answer.
Since the denominator of $h(x)$ vanishes at $x=0$, then h is not defined at $x=0$ and, hence, it is not continuous at 0 .
(b) [3 Pts] Let

$$
f(x)= \begin{cases}\frac{x^{2}+x-2}{x+2} & \text { if } x \neq-2 \\ 0 & \text { if } x=-2\end{cases}
$$

Prove that f is discontinuous at $x=-2$.
We observe that

$$
\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x+2}=\lim _{x \rightarrow-2} \frac{(x-1)(x+2)}{x+2}=-3 .
$$

Since $0=f(-2) \neq \lim _{x \rightarrow-2} f(x)$, then f is discontinuous at $x=-2$.
(c) [3 Pts] Define a so that g below will be continuous at $x=-2$. Prove the continuity at at $x=-2$.

$$
g(x)= \begin{cases}\frac{x^{2}+x-2}{x+2} & \text { if } x \neq-2 \\ a & \text { if } x=-2\end{cases}
$$

It follows from part (b) that if we set $a=g(-2)=-3$, then

$$
\lim _{x \rightarrow-2} g(x)=-3=g(-2) .
$$

Hence we need to assign $a=g(-2)=-3$ to ensure that g is continuous at $x=-2$.

