QUIZ 9

(I) Prove that the function $f(x)=\frac{1}{x}$ on $(2, \infty)$ is uniformly continuous by verifying the $\epsilon-\delta$ property. NOTE: you need to explicitly derive an expression of δ as a function of ϵ.

Proof. Observe that, for any $x, y \in[2, \infty), \frac{1}{x}, \frac{1}{y} \leq \frac{1}{2}$. Hence

$$
\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|y-x|}{x y} \leq \frac{|y-x|}{4} .
$$

It follows that, given any $\epsilon>0$, if we set $\delta=4 \epsilon$, then $|x-y|<\delta$ implies that $\left|\frac{1}{x}-\frac{1}{y}\right|<\epsilon$. This proves that the function $f(x)=\frac{1}{x}$ on $(2, \infty)$ is uniformly continuous.
(II) Prove that the function $f(x)=\frac{1}{\sqrt{x}}$ on $(2, \infty)$ is uniformly continuous by verifying the $\epsilon-\delta$ property. NOTE: you need to explicitly derive an expression of δ as a function of ϵ.

Proof. Observe that, for any $x, y \in[2, \infty), \frac{1}{\sqrt{x}}, \frac{1}{\sqrt{y}} \leq \frac{1}{2}$. Hence

$$
\left|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right|=\frac{|\sqrt{y}-\sqrt{x}|}{\sqrt{x y}}=\frac{|y-x|}{|\sqrt{y}+\sqrt{x}| \sqrt{x y}} \leq \frac{|y-x|}{4 \sqrt{2}} .
$$

It follows that, given any $\epsilon>0$, if we set $\delta=4 \sqrt{2} \epsilon$, then $|x-y|<\delta$ implies that $\left|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right|<\epsilon$.

