Test \#1

This is a closed-book, no-notes test. Please, write clearly and justify your arguments using the material covered in class to get credit for your work.
(1)[4 Pts] Use an argument by induction to prove that, if $x \geq 0$, then

$$
(1+x)^{n} \geq 1+n x \text { for all } n \in \mathbb{N} \text {. }
$$

Proof.

- For $n=1,(1+x)^{1} \geq 1+1 \cdot x=1+x$.
- Assume $(1+x)^{n} \geq 1+n x$ for some $n \in \mathbb{N}$.
- We now derive the case $n+1$. Using the statement above for n, we observe that
$(1+x)^{n+1}=(1+x)(1+x)^{n} \geq(1+x)(1+n x)=1+x+n x+n x^{2} \geq 1+x+n x=1+(n+1) x$.
This shows that statement is true for $n+1$, hence it is true for all $n \in \mathbb{N}$.
$(2)[6 \mathrm{Pts}]$ Let A, B be subsets of \mathbb{R}.
(a) State the definition of boundary for a subset S of \mathbb{R}.
(b) Prove that $\mathrm{bd}(A \cup B) \subset \mathrm{bd}(A) \cup \mathrm{bd}(B)$.
(c) Show that the converse containment $\operatorname{bd}(A) \cup \mathrm{bd}(B) \subset \mathrm{bd}(A \cup B)$ may fail by giving a counterexample, i.e., find sets A, B such that $\mathrm{bd}(A) \cup \mathrm{bd}(B) \not \subset \mathrm{bd}(A \cup B)$.
(a) The boundary of S is the set of its boundary points. A boundary point of S is a point x such that for any $\epsilon>0$ we have that $N(x, \epsilon) \cap S \neq \emptyset$ and $N(x, \epsilon) \cap S^{c} \neq \emptyset$.
(b) Proof. We will show that, for any $x \in \operatorname{bd}(A \cup B)$ then $x \in \operatorname{bd}(A)$ or $x \in \operatorname{bd}(B)$.

If $x \in \operatorname{bd}(A \cup B)$, then for any $\epsilon>0$ we have that $N(x, \epsilon) \cap(A \cup B) \neq \emptyset$ and $N(x, \epsilon) \cap(A \cup B)^{c} \neq \emptyset$. Note that $(A \cup B)^{c}=\left(A^{c} \cap B^{c}\right)$. Hence, for any $\epsilon>0$ we have that $N(x, \epsilon) \cap A \neq \emptyset$ and $N(x, \epsilon) \cap A^{c} \neq \emptyset$ or $N(x, \epsilon) \cap B \neq \emptyset$ and $N(x, \epsilon) \cap B^{c} \neq \emptyset$. That is, we have that $x \in \operatorname{bd}(A)$ or $x \in \operatorname{bd}(B)$.
(c) Let $A=[1,3]$ and $B=(2,4)$. Observe that $\operatorname{bd}(A)=\{1,3\}, \operatorname{bd}(B)=\{2,4\}$ and $\operatorname{bd}(A \cup B)=\operatorname{bd}([1,4))=\{1,4\}$. Hence in this case $\operatorname{bd}(A \cup B)$ is strictly contained in $\mathrm{bd}(A) \cup \mathrm{bd}(B)$ so that $\mathrm{bd}(A) \cup \mathrm{bd}(B) \not \subset \mathrm{bd}(A \cup B)$
(3)[5 Pts] Find a set (or sets) satisfying the description below, or explain why they do not exist.
(a) A set $S \in \mathbb{R}$ that is neither open nor closed.
$S=[1,2)$
(b) A set $S \in \mathbb{R}$ that has a maximum, a minimum and is not closed. $S=[1,2) \cap(3,4]$. Note that $\min S=1$ and $\max S=4$ but S is not closed.
(c) A collection of open sets A_{n} such that $\cap_{n} A_{n}$ is not open.
$A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. Then $\cap_{n} A_{n}=\{0\}$, closed set.
(d) A collection of open sets A_{n} such that $\cup_{n} A_{n}$ is not open.

Not possible. By theorem in class, the union of any collection of open sets is open.
(e) An unbounded set containing no accumulation points.

The set \mathbb{N} is unbounded and contains no accumulation points.

