$\underline{\text { Test \#2 }}$

This is a closed-book, no-notes test.
[1] [5 Pts]
(a) State the definition of convergence for a sequence of real numbers.

A sequence of real numbers $\left(a_{n}\right)$ converges to $L \in \mathbb{R}$ if, given any $\epsilon>0$, there exists an $N \in \mathbb{N}$ (where N may depend on ϵ) such that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$.
(b) Use the definition of convergence to prove that if $\left(a_{n}\right)$ converges to L, then $\left(\left|a_{n}\right|\right)$ converges to $|L|$.
Proof. Assume that $\left(a_{n}\right)$ converges to L. Hence, by definition, given any $\epsilon>0$, there is an $N=N(\epsilon)$ such that

$$
\left|a_{n}-L\right|<\epsilon \quad \text { if } n>N .
$$

It follows that

$$
\left|\left|a_{n}\right|-|L|\right|=\left|\left|a_{n}-L+L\right|-|L|\right| \leq\left|a_{n}-L\right|<\epsilon \quad \text { if } n>N .
$$

This shows that $\left(\left|a_{n}\right|\right)$ converges to $|L|$.
[2] [5 Pts] Consider the sequence of real numbers defined by

$$
s_{1}=2 \text { and } s_{n+1}=\sqrt{2 s_{n}+3} \text { for } n \in \mathbb{N} .
$$

(a) Prove that $\left(s_{n}\right)$ is convergent
(b) Find the limit of $\left(s_{n}\right)$.

Claim: $\left|s_{n}\right| \leq 3$ for all $n \in \mathbb{N}$.
Proof by induction:
(1) $\left|s_{1}\right|=2 \leq 3$
(2) Assume $\left|s_{k}\right| \leq 3$ for some $k \in \mathbb{N}$
(3) Using step (2), we have: $\left|s_{k+1}\right|=\sqrt{2 s_{k}+3} \leq \sqrt{6+3}=3$.

Claim: $s_{n+1} \geq s_{n}$ for all $n \in \mathbb{N}$.
Proof by induction:
(1) $s_{2}=\sqrt{7}>2=s_{1}$
(2) Assume $s_{k+1} \geq s_{k}$ for some $k \in \mathbb{N}$.
(3) Using step (2), we have: $s_{k+2}=\sqrt{2 s_{k+1}+3} \geq \sqrt{2 s_{k}+3}=s_{k+1}$.

By the Monotone bounded theorem for sequences, it follows that $\left(s_{n}\right)$ converges. Let $\lim s_{n}=L$. Then

$$
L=\lim s_{n+1}=\lim \sqrt{2 s_{n}+3}=\sqrt{2 L+3}
$$

Hence $L^{2}-2 L-3=0$ and $L=3$ or $L=-1$. Since the limit of the sequence is nonnegative, it must be $L=3$.
(3)[5 Pts] For each of the following statements, either prove it (you can use theorems discussed in class) or give a counterexample.
(a) Every bounded non-negative sequence of real numbers converges. FALSE. $\left(a_{n}\right)=\left(1+(-1)^{n}\right)$ is bounded and non-negative but not convergent.
(b) If $\left(\left|s_{n}\right|\right)$ is a convergent sequence of real numbers, then $\left(s_{n}\right)$ is also convergent.
FALSE. $\left(s_{n}\right)=\left(-1^{n}\right)$ is not convergent but $\left(\left|s_{n}\right|\right)=\left(1^{n}\right)$ is convergent.
(c) If the sequence of real numbers (s_{n}) diverges to $+\infty$ and the sequence of real numbers $\left(t_{n}\right)$ is both bounded and positive ($t_{n}>0$ for all n), then $\left(t_{n} s_{n}\right)$ diverges to $+\infty$.
FALSE. Let $\left(s_{n}\right)=(n)$ and $\left(t_{n}\right)=\left(\frac{1}{n}\right)$; then $s_{n} t_{n}=1$ and this sequence is convergent.
(d) If the sequence of real numbers $\left(s_{n}\right)$ diverges to $+\infty$ and the sequence of real numbers $\left(t_{n}\right)$ has apositive $\operatorname{limit} \lim t_{n}=L>0$, then $\left(t_{n} s_{n}\right)$ diverges to $+\infty$.
TRUE. By problem (3) in homework 5, whose proof is available online and was presented in class.
(e) If $\lim s_{n}=0$ and the sequence of real numbers $\left(t_{n}\right)$ is non-negative, that is $t_{n} \geq 0$ for all n, then $\left(t_{n} s_{n}\right)$ converges.
FALSE. Let $\left(s_{n}\right)=(1 / n)$ and $\left(t_{n}\right)=\left(n^{2}\right)$; then $\lim s_{n} t_{n}=\infty$.

