Math 3333 – Spring 2022

Name: SOLUTION

Test #2

This is a closed-book, no-notes test.

[1] [5 Pts]

(a) State the definition of *convergence* for a sequence of real numbers.

A sequence of real numbers (a_n) converges to $L \in \mathbb{R}$ if, given any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ (where N may depend on ϵ) such that $|a_n - L| < \epsilon$ whenever n > N.

(b) Use the definition of convergence to prove that if (a_n) converges to L, then $(|a_n|)$ converges to |L|.

Proof. Assume that (a_n) converges to L. Hence, by definition, given any $\epsilon > 0$, there is an $N = N(\epsilon)$ such that

$$|a_n - L| < \epsilon \quad \text{if } n > N.$$

It follows that

$$||a_n| - |L|| = ||a_n - L + L| - |L|| \le |a_n - L| < \epsilon \quad \text{if } n > N.$$

This shows that $(|a_n|)$ converges to |L|.

[2] [5 Pts] Consider the sequence of real numbers defined by

$$s_1 = 2$$
 and $s_{n+1} = \sqrt{2s_n + 3}$ for $n \in \mathbb{N}$.

- (a) Prove that (s_n) is convergent
- (b) Find the limit of (s_n) .

Claim: $|s_n| \leq 3$ for all $n \in \mathbb{N}$. Proof by induction:

- (1) $|s_1| = 2 \le 3$
- (2) Assume $|s_k| \leq 3$ for some $k \in \mathbb{N}$
- (3) Using step (2), we have: $|s_{k+1}| = \sqrt{2s_k + 3} \le \sqrt{6+3} = 3$.

Claim: $s_{n+1} \ge s_n$ for all $n \in \mathbb{N}$. Proof by induction:

- (1) $s_2 = \sqrt{7} > 2 = s_1$
- (2) Assume $s_{k+1} \ge s_k$ for some $k \in \mathbb{N}$.
- (3) Using step (2), we have: $s_{k+2} = \sqrt{2s_{k+1}+3} \ge \sqrt{2s_k+3} = s_{k+1}$.

By the Monotone bounded theorem for sequences, it follows that (s_n) converges. Let $\lim s_n = L$. Then

$$L = \lim s_{n+1} = \lim \sqrt{2s_n + 3} = \sqrt{2L + 3}$$

Hence $L^2 - 2L - 3 = 0$ and L = 3 or L = -1. Since the limit of the sequence is nonnegative, it must be L = 3.

(3)[5 Pts] For each of the following statements, either prove it (you can use theorems discussed in class) or give a counterexample.

(a) Every bounded non-negative sequence of real numbers converges.

FALSE. $(a_n) = (1 + (-1)^n)$ is bounded and non-negative but not convergent.

(b) If $(|s_n|)$ is a convergent sequence of real numbers, then (s_n) is also convergent.

FALSE. $(s_n) = (-1^n)$ is not convergent but $(|s_n|) = (1^n)$ is convergent.

(c) If the sequence of real numbers (s_n) diverges to $+\infty$ and the sequence of real numbers (t_n) is both bounded and positive $(t_n > 0$ for all n), then $(t_n s_n)$ diverges to $+\infty$.

FALSE. Let $(s_n) = (n)$ and $(t_n) = (\frac{1}{n})$; then $s_n t_n = 1$ and this sequence is convergent.

(d) If the sequence of real numbers (s_n) diverges to $+\infty$ and the sequence of real numbers (t_n) has apositive limit $\lim t_n = L > 0$, then $(t_n s_n)$ diverges to $+\infty$.

TRUE. By problem (3) in homework 5, whose proof is available online and was presented in class.

(e) If $\lim s_n = 0$ and the sequence of real numbers (t_n) is non-negative, that is $t_n \ge 0$ for all n, then $(t_n s_n)$ converges. FALSE. Let $(s_n) = (1/n)$ and $(t_n) = (n^2)$; then $\lim s_n t_n = \infty$.