Name:

Test #2

[Please, write your solution legibly. You must justify your answers to get credit for your work.

(1) [4 Pts] Suppose that $\lim s_n = 1$. Use the definition of limit to prove that there exists an $N \in \mathbb{N}$ such that $s_n < 1.1$ for all $n \ge N$.

Since (s_n) converges, there exists an $N \in \mathbb{N}$ such that $|s_n - 1| < 0.1$ if $n \ge N$ (we apply the definition of convergence with $\epsilon = 0.1$). This implies that $0.9 < s_n < 1.1$ if $n \ge N$.

(2) Prove that if $\lim_{n\to\infty} s_n = -\infty$ and if (t_n) is a bounded sequence, then

$$\lim_{n \to \infty} (s_n + t_n) = -\infty$$

Proof. Since (t_n) is bounded, there exists an N_1 and an L > 0 such that $|t_n| < L$ if $n > N_1$. That is, $-L < t_n < L$ for all $n > N_1$

Since $\lim_{n\to\infty} s_n = -\infty$, given any M > 0, there exists an N_2 such that $s_n < -M - L$ if $n > N_2$.

Hence, provided $n > \max\{N_1, N_2\}$, we have that $s_n + t_n < -M$. Since M is arbitrary, this proves that $\lim_{n\to\infty}(s_n + t_n) = -\infty$.

(3)[5 Pts] Consider the sequence of real numbers defined by

$$s_1 = 3$$
 and $s_{n+1} = \frac{1}{2}\sqrt{s_n + 3}$ for $n \in \mathbb{N}$.

- (a) Prove that (s_n) is convergent.
- (b) Find the limit of (s_n) .

Claim: $s_n \ge 0$ for all $n \in \mathbb{N}$. Proof by induction:

- (1) $s_1 = 3 \ge 0$
- (2) Assume $s_n \ge 0$
- (3) $s_{n+1} = \frac{1}{2}\sqrt{s_n + 3} \ge \frac{1}{2}\sqrt{0 + 3} = \frac{\sqrt{3}}{2} \ge 0.$

Claim: $s_{n+1} \leq s_n$ for all $n \in \mathbb{N}$. Proof by induction:

- (1) $s_2 = \frac{1}{2}\sqrt{6} < 3 = s_1$
- (2) Assume $s_{n+1} \leq s_n$.
- (3) $s_{n+2} = \frac{1}{2}\sqrt{s_{n+1}+3} \le \frac{1}{2}\sqrt{s_n+3} = s_{n+1}.$

By the Monotone bounded theorem for sequences, it follows that (s_n) converges. Let $\lim s_n = L$. Then

$$2L = 2\lim s_{n+1} = \lim \sqrt{s_n + 3} = \sqrt{L+3}$$

Hence $4L^2 - L - 3 = 0$ with roots L = 1 or L = -3/4. Since the limit of the sequence is nonnegative, it must be L = 1.

(4)[6 Pts] For each of the following statements, state whether it True or False. If True, prove it; if False, give a counterexample.

- (a) If $(|s_n|)$ is a convergent sequence, then (s_n) is also convergent. FALSE. Let $s_n = (-1)^n$. $(|s_n|) = (1, 1, 1, ...)$ is a convergent sequences but (s_n) is not convergent.
- (b) If the sequence of real numbers (s_n) diverges to $+\infty$, the sequence of real numbers (t_n) is bounded and $t_n \ge 0$ for all n, then $(s_n t_n)$ diverges to $+\infty$. FALSE. Let $s_n = n$ and $t_n = \frac{1}{n}$. We have that $\lim s_n = \infty$, (t_n) bounded and non-negative. However the product is not diverging since $\lim s_n t_n = 0$.
- (c) If the sequence of real numbers (s_n) converges and the sequence of real numbers (t_n) is bounded, then (t_ns_n) also converges.
 FALSE. Let (s_n) = (1, 1, 1, ...) and t_n = (-1)ⁿ. Then (s_nt_n) = ((-1)ⁿ) which is divergent.
- (d) If S ⊂ R is a compact nonempty set, then there is at least one point in R that is an accumulation point of S.
 FALSE. The set S = {1,2,3} is compact since closed and bounded but it contains no accumulation points.
- (e) The set S = {1/n : n ∈ N} is a compact set.
 FALSE. The set S is not closed since the point 0 is an accumulation point of S but does not belong to S. Hence S is not compact.