Test \#3

Please, read carefully the statement of the problem. You must justify your arguments using the methods and results presented in class.
(1) [5 Pts]
(a) State the $\epsilon-\delta$ definition of continuity for a function $f: D \mapsto \mathbb{R}$, where $D \subset \mathbb{R}$.
(b) Prove that the function $f(x)=x^{2}$ on $(0,7)$ is continuous by verifying the $\epsilon-\delta$ property and show that you can choose a δ independent of x.
HINT: note that f is defined on $(0,7)$, not on all of \mathbb{R}.
(a) Let $f: D \mapsto \mathbb{R}$. f is continuous at $x_{0} \in D$ if, given $\epsilon>0$, there is a $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ and $x \in D$ imply that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. f is continuous on D if f is continuous for every $x \in D$.
(b) We have that $|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x-y||x+y| \leq 14|x-y|$ for $x, y \in(0,7)$.

Hence, given any $\epsilon>0$, let $\delta=\epsilon / 14$. It follows that $|f(x)-f(y)|<\epsilon$ if $|x-y|<\delta$, for all $x, y \in(0,7)$.
(2)[5 Pts] Let

$$
f(x)= \begin{cases}1+\sqrt{x} & \text { if } 0 \leq x<1 \\ a-x & \text { if } x \geq 1\end{cases}
$$

(a) Use the definition of one-sided limits to determine the $\operatorname{limit}_{\lim }^{x \rightarrow 1^{-}} \boldsymbol{f}(x)$.
(b) Find the value of a so that f continuous at $x=1$. Justify your answer by proving that f is continuous at a once you assign the correct value.
(a) Observe that, for $0 \leq x<1,|f(x)-2|=|\sqrt{x}-1|=\frac{|x-1|}{|\sqrt{x}+1|} \leq|x-1|$. Hence, given any $\epsilon>0$, let $\delta=\epsilon$. Then $|f(x)-2|<\epsilon$ if $1-\delta \leq x<1$. This shows that $\lim _{x \rightarrow 1^{-}} f(x)=2$.
(b) Let $a=3$, then $f(1)=2$. Claim: $\lim _{x \rightarrow 1^{+}} f(x)=2$. In fact, given any $\epsilon>0$, let $\delta=\epsilon$. Then $|f(x)-2|=|x-1|<\epsilon$ if $1<x<1+\delta$.

Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=2=f(1)$, then f is continuous at $x=1$.
(3) $[5 \mathrm{Pts}]$ Let

$$
g(x)= \begin{cases}3 x & \text { if } x \text { is rational } \\ 2 x+1 & \text { if } x \text { is irrational }\end{cases}
$$

(a) Prove that g is discontinuous at $x=\frac{1}{2}$.
(b) Is g continuous at $x=1$? Prove it, if you think it is; otherwise, prove that it is not.
(a) Let $\left(x_{n}\right)$ be a sequence of irrationals converging to $\frac{1}{2}$. Then $\lim _{n} g\left(x_{n}\right)=\lim _{n} 2 x_{n}+1=$ 2. However $g\left(\frac{1}{2}\right)=\frac{3}{2}$. Hence g is not continuous at $x=\frac{1}{2}$.
(b) $g(1)=3$. Given any $\epsilon>0$, let $\delta=\epsilon / 3$. Then $|g(x)-3| \leq 3|x-1|<\epsilon$ if $|x-1|<\delta$.

Note that the inequality $|g(x)-3| \leq 3|x-1|$ follows from observation that $|g(x)-3|=3|x-1|$ if x is rational and $|g(x)-3|=2|x-1|$ if x is irrational.

