HW \#11

Please, write clearly and justify all your steps, to get proper credit for your work.
(1)[4 Pts] In comparing the times until failure (in hours) of two different types of light bulbs, we obtain the sample characteristics $n_{1}=45, \bar{x}=984$, $s_{x}^{2}=8,742$ and $n_{2}=52, \bar{y}=1,121, s_{x}^{2}=9,411$. Find an approximate 90% confidence interval for the difference of the two population means.
(2)[4 Pts] We need to estimate the average of a population and from measurements on similar populations we estimate that $s^{2}=8$. Find the sample size n such that we are 90 percent confident that the estimate of \bar{x} is within ± 1 unit of the true mean μ.
(3)[4 Pts$]$ Let μ be the mileage of a certain brand of tire. A sample of $n=24$ tires is taken at random, resulting in $\bar{x}=32,132, s_{x}^{2}=2,596$. Find a 99 percent confidence interval for μ.
(4) [4 Pts] Two rubber compounds were tested for tensile strength and the following values were found

$$
\begin{aligned}
& A: 32,30,33,32,29,34,32 \\
& B: 33,35,36,37,35
\end{aligned}
$$

Find a 95% confidence interval for the difference of the two population means.

